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Benchmarks and Challenges for Neuromorphic Engineering

ABSTRACT2

Standardized benchmarks in Computer Vision have greatly contributed to the advance of3
approaches to many problems in the field. If we want to enhance the visibility of event-driven4
vision and increase its impact, we will need benchmarks that allow comparison among different5
neuromorphic methods as well as comparison to Computer Vision conventional approaches. We6
present datasets to evaluate the accuracy of frame-free and frame-based approaches for tasks7
of visual navigation. Similar to conventional Computer Vision datasets, we provide synthetic and8
real scenes, with the synthetic data created with graphics packages, and the real data recorded9
using a mobile robotic platform carrying a dynamic and active pixel vision sensor (DAVIS) and10
an RGB+Depth sensor. For both datasets the cameras move with a rigid motion in a static11
scene, and the data includes the images, events, optic flow, 3D camera motion, and the depth12
of the scene, along with calibration procedures. Finally, we also provide simulated event data13
generated synthetically from well-known frame-based optical flow datasets.14
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1 INTRODUCTION

Asynchronous frame-free vision sensors have gained popularity among vision researchers in recent years.16
The most prominent of these sensors are the temporal change threshold imager (Mallik et al., 2005),17
the DVS (Lichtsteiner et al., 2008), the ATIS (Posch et al., 2011), and the DAVIS (Brandli et al.,18
2014). Inspiration for their design comes from the transient pathway of primate vision, which processes19
information due to luminance changes in the scene (Lichtsteiner et al., 2008; Liu et al., 2015). Their20
properties, such as the high temporal resolution (triggering temporal contrast events with a resolution21
of a few microseconds), low-bandwidth, low-computational resource requirements, low-latency, and real-22
time performance, make them interesting for many applications of motion perception. While conventional23
cameras record image luminance at fixed time intervals, frame-free vision sensors record asynchronously24
the time and location, where changes in the luminance occur.25
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Visual motion analysis for navigation is about relating the observed intensity changes on the imaging26
device to the 3D scene geometry and the 3D motion of the observer (or imaging device) relative to the27
scene. The computational analysis involves two distinct processes: the estimation of observed image28
motion on the imaging surface due to the movement of scene points, in Computer Vision usually called29
optical flow, and the estimation of the geometry and dynamics of the scene on the basis of image motion.30
Visual navigation, in general, involves moving cameras in environments that can be dynamic as well, and31
it refers to a set of tasks ranging from obstacle avoidance, over object tracking, 3D motion estimation32
and scene segmentation, to map making. Currently, however, our dataset has static scenes only. We33
provide the raw data along with the 3D motion and the scene geometry, and this data allows for evaluating34
algorithms concerned with the classic structure from motion problems of image motion estimation, 3D35
motion estimation, reconstruction, and segmentation by depth.36

Evaluation datasets drive applications and challenge researchers to develop techniques that are widely37
applicable, consider diverse scenarios, and have high accuracy. The Computer Vision community has38
realized their importance for many years, and has provided datasets for many applications, including39
visual navigation. Among the best known datasets for image motion one can find Middlebury (Baker40
et al., 2011), MPI Sintel (Butler et al., 2012), and KITTI (Geiger et al., 2012). Middlebury, a benchmark41
that also provides a creative ranking of methods, has been the standard until the last few years. The42
more recent MPI Sintel and KITTI datasets include scenarios of greater complexity and much larger43
image motion. The former consists of synthetic sequences and has many challenging cases such as44
transparencies, blurring, or variations in illumination. The latter has sequences from real-world driving45
scenarios, and provides besides optical flow also ground-truth for 3D motion, structure, and the tracking46
of objects. Other well-known data sets for 3D motion and structure include the CMU dataset (Badino47
et al., 2015), the TUM dataset (Sturm et al., 2012), as well as the KITTI dataset (Geiger et al., 2012).48
These datasets were designed for evaluation of navigation and localization algorithms.49

Along with datasets, we also need metrics to evaluate the techniques. The metrics of Computer Vision50
focused mostly on accuracy. Image motion is usually evaluated by the average error of either the flow51
vectors (Otte and Nagel, 1994), or their directions (Fleet and Jepson, 1990). 3D camera motion is52
evaluated by the average error in the direction of the rotation axis, the angular velocity, and the direction53
of translation (see (Raudies and Neumann, 2012)). Clearly, the average error does not capture fully the54
quality of a method, given the heterogeneity of sequences in the different datasets. In (Sun et al., 2014),55
statistical significance tests provide a way to cope with this problem.56

A few of the methods published in the event-based literature included evaluations. Several methods57
evaluated the accuracy of image motion estimation methods, e.g. (Tschechne et al., 2014; Benosman58
et al., 2014; Barranco et al., 2014; Orchard and Etienne-Cummings, 2014), and (Censi and59
Scaramuzza, 2014) evaluated odometry estimation. However, all these methods used their own datasets.60
Therefore, so far there is a lack of comparisons between different event-based methods and comparisons61
to Computer Vision methods. Another paper, which is part of this special issue (Ruckauer and Delbruck,62
2015) provides a dataset for the evaluation of event-based flow methods and also releases codes for the63
evaluated methods. However, this work is the first to present a dataset that facilitates comparison of64
event-based and frame-based methods for 2D and 3D visual navigation tasks.65

Our real-time dataset was collected with a mobile platform carrying a DAVIS sensor (Brandli et al.,66
2014) and an RGB-D sensor (RGB + Depth sensor). The DAVIS sensor provides asynchronous streams67
of events called DVS events, and synchronous sequences of image frames called APS frames. From the68
RGB-D sensor we obtain the depth maps of the scene and from the odometry of the platform we obtain69
the 3D motion. Using the 3D motion and depth, we compute the image motion. In addition to the data,70
we also provide the code for the calibration of the DAVIS sensor with respect to the RGB-D sensor (using71
the synchronous frames of the DAVIS), and the calibration between the robotic platform and the DAVIS72
sensor. We use the same metrics as in conventional methods to evaluate the accuracy of event-driven73
methods. To account for the sparseness of the event data, we also include a measure of the data density.74
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The paper is structured as follows: §2 describes current datasets of visual navigation from Computer75
Vision. Next, §3 describes how we created the event-based dataset. §4 reviews different metrics for76
evaluation and §5 presents some of the sequences of our dataset. Finally, §6 concludes the work.77

2 DATASETS IN COMPUTER VISION

Benchmarks, datasets and quantifiable metrics to estimate accuracy are very common in the Computer78
Vision literature. They have greatly influenced the development of Computer Vision techniques for79
different applications, and contributed to market solutions in demanding fields such as medical image80
analysis, autonomous driving, and robotics.81

There are a number of benchmarks for visual navigation. Barron et al. (Barron et al., 1994) were82
the first to propose a benchmark and quantitative evaluation of optical flow methods. This dataset of83
synthetic scenes was then replaced by the Middlebury database (Baker et al., 2011), which contains84
much more challenging datasets of synthetic and real scenes with objects at different depth causing motion85
discontinuities. The success of Middlebury may be partly due to its evaluation platform: through a web86
interface one can upload the results of a motion estimation method so it will be compared to the state-of-87
the-art. Half of the example sequences are provided with the ground-truth as training set to allow users88
to tune their methods. For evaluation, authors are instructed to estimate the motion for the remainder of89
the sequences (the test set) whose ground-truths are not provided, and to submit them through the web90
application. Then, the methods are ranked according to different error metrics: endpoint error, angular91
error, interpolation error, and normalized interpolation error. The most recent prominent datasets, MPI92
Sintel (Butler et al., 2012) and KITTI (Geiger et al., 2012) are much more challenging. They provide93
long video sequences at high spatial resolution, and the image motion between frames spans a large range94
of values (even exceeding 100 pixels), and thus actually the video frames in these sets are closer to stereo95
than image motion configurations. The sequences include deformable objects and introduce very complex96
problems such as transparencies, shadows, smoke and lighting variations. Masks for motion boundaries97
and for unmatched pixels are included, and new metrics are described to measure the image motion98
accuracy in these areas. MPI Sintel, which is generated with a computer graphic model, provides different99
variations of its sequence, such as with and without motion blur.100

Several other datasets provide benchmarks for 3D position and pose estimation. Usually they include101
sequences of image frames and the corresponding six parameters of the camera motion defined by the102
rotation and the translation. Some of these datasets also provide corresponding sequences of depth maps103
and image motion fields. (Raudies and Neumann, 2009) used the earlier created Yosemite sequence, a104
synthetic fly-through sequence over the so-named valley, and created the synthetic Fountain sequence105
with a curvilinear motion for a patio sequence. KITTI (Geiger et al., 2012) provides a dataset for 3D106
visual navigation, specifically created for autonomous driving. It includes data from a stereo camera rig,107
a laser scanner, and GPS/IMU signals. The CMU dataset, available at (Badino et al., 2015), uses the108
same sensors also mounted on a car. The data of the TUM dataset (Sturm et al., 2012) includes images109
and depth frames captured with an RGB-D sensor (Microsoft Kinect). The ground-truth odometry was110
estimated from the external camera-based tracking system and the RGB-D sensor data.111

3 DATASET DESIGN

Event-based sensors and frame-based cameras record very different kinds of data streams, and thus to112
create a benchmark for their comparison is quite challenging. While conventional frame-based sensors113
record scene luminance, which is static scene information, event-based sensors record changes in the114
luminance, which is dynamic scene information. Conventional cameras have a higher spatial resolution115
than event-based sensors, but their temporal resolution is fixed, usually up to approximately 60 fps (frames116
per second). In contrast, for frame-free sensors there is no fixed sampling period, which can be as small117
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as a few microseconds. To compare static images to events, a few works (such as (Pérez-Carrasco et al.,118
2013)) were shaking the sensor. This technique, however, is not applicable for visual navigation, as it119
would introduce too much additional noise. Indeed, we require a conventional sensor and a frame-free120
sensor collecting data of the same scene. For our dataset we used the DAVIS sensor, which collects both121
asynchronous brightness-change events and synchronous frames.122

The synthetic data in our benchmark was created from existing Computer Vision datasets (Section §3.1),123
and includes two sets. First, we generated events (Barranco et al., 2014) for the optic flow sequences124
provided in (Baker et al., 2011) and (Barron et al., 1994). The such created dataset allows comparison to125
the large number of existing optic flow techniques in the Computer Vision literature, but it is not accurate126
due to the lack of ground-truth information (in the original optical flow sequences) in areas occluded127
between consecutive frames and ambiguities in the depth discontinuities. This problem was overcome in128
a second dataset which was built from a graphics-generated 3D scene model (Barranco et al., 2015). The129
real data in our benchmark was collected with a mobile robot carrying a rig on which we mounted a DAVIS130
sensor and an RGB-D sensor (RGB images plus Depth) (Section §3.2). By calibrating the DAVIS sensor131
with the depth sensor, we obtained the data required for reconstructing the 3D scene model. The simple132
odometry system, consisting of a gyroscope and an accelerometer, provided the 3D motion ground-truth.133

Note, that we computed the motion of the sensor using the odometry of our platform. An alternative,134
much easier approach to obtain 3D sensor estimates, would be to use an external motion capture system135
(Voigt et al., 2011). However, motion capture systems are expensive and cannot be used for outdoor136
scenarios.137

Our dataset is available at http://atcproyectos.ugr.es/realtimeasoc/protected/138
evbench.html (user: reviewer and pass: frontiers2015). It includes the DAVIS sequences (DVS events139
and APS frames), the Kinect data (RGB images and depth maps), the generated motion flow fields,140
and the 3D camera motion (translation and rotation). The code for the different calibration procedures,141
registrations, and for computing the evaluation metrics, described in the next sections, are available at the142
software repository https://github.com/fbarranco/eventVision-evbench.143

3.1 SIMULATED EVENTS FROM CURRENT COMPUTER VISION DATASETS

The first dataset was created from the sequences in Middlebury (Baker et al., 2011) by simulating the144
events on the basis of the ground truth optic flow (Barranco et al., 2014, 2015). Real frame-free sensors145
trigger an event when the intensity difference at a point exceeds a predetermined value (more exactly146
when the change in log Intensity exceeds a threshold). To simulate this, we first interpolate image frames147
in time using the optic flow information. Assuming a frame rate of 20 fps (frames per second) the optic148
flow sequences, we interpolate 50000 samples between pairs of consecutive frames to achieve a simulated149
temporal resolution of 1 µs in the DVS. Then events (with exact timestamp) are created, by checking150
at every position for changes greater than the threshold. However, this simulation only works at image151
regions due to smooth surfaces, but not at occlusion regions, where usually ground-truth flow is not152
provided. To perform reconstruction, a 3D model of the scene is required. In its absence we generated153
our data using the following approximation: we differentiate between occluded regions, which are pixels154
visible in the previous frame but not the current, and dis-occluded regions, which are pixels not visible in155
the previous frame, but uncovered in the current frame. Intensity values of occluded regions are obtained156
from the previous frame and those of dis-occlusions from the subsequent frame. For non-static regions,157
we assume the same motion for the background and the region. More complex scenarios, including non-158
regular motion patterns or occluded objects with different motions, are discarded.159

The second dataset was created in a way similar to the MPI Sintel dataset (Butler et al., 2012). Using160
a 3D graphics model of the scene and information on the 3D motion and 3D pose of the camera, we161
reconstructed the motion flow field and stream of events (Barranco et al., 2015). Specifically, we used162
the 3D model, the textures, and the 3D motion ground-truth provided by (Mac Aodha et al., 2013), which163
were created using the 3D software and modeling tool Maya (see http://www.autodesk.com/164
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products/maya). We note that for a more realistic simulation, one could additionally add simulated165
noise on the events using appropriate probability distributions.166

3.2 DAVIS MOUNTED ON A MOBILE PLATFORM

The DAVIS sensor (Brandli et al., 2014) and a Microsoft Kinect Sensor (providing an RGB image and167
depth map) are mounted on a stereo rig and the stereo rig is mounted on a Pan Tilt Unit (PTU-46-17P70T168
by FLIR Motion Control Systems) on-board a Pioneer 3DX Mobile Robot. The motion is due to the169
rotation of the PTU defined by pan and tilt angles and angular velocities, and the translation of the Pioneer170
3DX Mobile Robot defined by the direction of translation and the speed. ROS (Robot Operating System)171
packages are available for both the PTU and the Pioneer 3DX mobile robot. Fig. 1 shows the Pan Tilt Unit172
on the left, the Pioneer 3DX mobile robot in the center, and the DAVIS sensor (a DAVIS240b by Inilabs)173
on the right.174

Our dataset provides the following:175

• The 3D motion parameters: 3D translation and 3D pose of the camera. These are provided by the PTU176
and the Pioneer Mobile Robot. Calibration of the PTU with respect to the platform, and calibration177
of the DAVIS with respect to the PTU are required.178

• The image depth in the coordinate system of the DAVIS. Depth is obtained by the Microsoft Kinect179
Sensor (RGB-D sensor). A stereo calibration registering the Kinect depth to the DAVIS camera180
coordinates is required.181

• The 2D motion flow field. Using the 3D motion and depth, the 2D motion flow field in the DAVIS182
coordinate system is computed.183

DAVIS AND RGB-D SENSOR CALIBRATION

The RGB-D sensor provides the depth of the scene. This depth needs to be transformed to the coordinate184
system of the DAVIS. In our procedure, we first calibrate the two cameras individually, both for intrinsic185
and extrinsic parameters. Next, since the spatial resolutions of the two cameras are very different, we186
compute the transformation of the depth by creating an intermediate 3D model from the Kinect data,187
which subsequently is projected to the DAVIS coordinate system.188

In the very first step the RGB data and the Depth of the Kinect, which internally are captured by189
two separate sensors, are aligned to each other using the Kinect SDK. Next, the Kinect intrinsic and190
extrinsic sensor camera parameters are obtained using conventional image camera calibration on RGB191
data. Similarly, the DAVIS intrinsic and extrinsic camera parameters are obtained using conventional192
image camera calibration on the APS frames of the DAVIS (the APS frames and the DVS events in the193
DAVIS are geometrically calibrated). However, we note that the DVS event signal of the DAVIS, may also194
be calibrated by itself using a calibration grid of flashing LEDs (Mueggler et al., 2015). Such a procedure195
can be used if only a DVS (but not a DAVIS) is available. We can use the procedure of (Mueggler et al.,196
2015), which consists of two steps: first it adjusts the focus, then is computes the intrinsic parameters.197
The code is based on ROS, and the calibration uses OpenCV functions.198

The second step involves first a stereo calibration between the RGB-D sensor and the DAVIS, which199
provides the rotation and translation of the two sensors with respect to each other. Then the depth between200
the two cameras is registered via a 3D world model. In detail, the procedure involves the following201
transformations.202

First, the Kinect 2D image coordinates are compensated for radial distortion as:203

x’ = x(1 + k1r
2 + k2r

4 + k3r
6) (1)
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where k1, k2, k3 are the radial distortion coefficients, x and x’ are the distorted and undistorted image204
coordinates respectively, and r = ‖x‖.205

Next the 3D world coordinates Xw = (xw, zw) are obtained from the 2D image coordinates, x’, as:206

[
Xw
zw

]
=

[
−(x’− c)z 1f

z

]
(2)

where c denotes the principal point, f the focal length of the Kinect camera, and z the depth.207

The 3D point cloud is then transformed using the geometric transformation between the sensors, given208
by the 3 × 1 translation t and 3 × 3 rotation R obtained by the stereo calibration. The transformation is209
formulated as X’w = RXw + T, where X’w is the new point cloud model in the 3D world.210

Lastly, the point cloud X’w is projected onto the 2D sensor plane of the DAVIS to obtain the sensor211
coordinates xD as:212

xD = xw
fD
zw

+ cD (3)

where cD denotes the principal point and fD the focal length of the DAVIS sensor. The depth for each213
image coordinate in the DAVIS image plane is registered using the Z-buffer. Any holes or ambiguities in214
the new registered depth are filled in using the inpainting method in (Janoch et al., 2013), which assumes215
second order smoothness, minimizing the curvature in a least-squares manner. An example of the result216
of this calibration is shown in Fig. 3.217

DAVIS SENSOR AND PTU CALIBRATION

This section explains how to obtain an analytic expression for the rotation Rα and translation Tα of the218
DAVIS sensor (in its coordinate system) corresponding to a pan or tilt angle α of the PTU. This is a219
non-trivial task. The procedure is as follows: We first derive the translation and rotation for a number of220
pan-tilt combinations with respect to a base pose (pan = 0◦, tilt = 0◦) in the DAVIS camera. Then, we use221
these derived values to compute the (fixed) transformation between the DAVIS coordinate system and the222
PTU coordinate system. The parameters involved are the translation u between the coordinate systems,223
the rotation axis r of the pan-tilt unit, and the rotation axis s of the camera (see Fig. 2).224

First, we derive the translation and rotation of the DAVIS corresponding to various pan (rotation in the225
horizontal plane) and tilt (rotation in the vertical plane) combinations. In order to do that, we capture APS226
images with the DAVIS sensor for a number of pan tilt combinations, and perform a stereo calibration227
for each set of images with respect to the baseline (pan = 0◦ and tilt = 0◦). We use as angle rotations for228
pan and tilt the values [-5◦, -4◦, -3◦, -2◦, -1◦, 0◦, 1◦, 2◦, 3◦, 4◦, 5◦]. Since the transformation for pan and229
tilt can be applied independently, we do not need different combinations of pan and tilt. Thus, we have230
11 pan combinations (0◦ tilt, including the base-pose, pan = 0◦ and tilt = 0◦) and 10 tilt combinations231
(0◦ pan). For every combination, we take 10 images for the calibration, each with a different pose and232
position of the calibration pattern. The calibration provides the extrinsic rotation and translations of the233
DAVIS coordinate system with respect to the base-pose.234

Let us now compute the translation of the DAVIS sensor center with respect to the PTU center. Consider
the center of the coordinate system of the DAVIS for the baseline position OD. The position of the
coordinate center for a combination of pan and tilt OD

rt
is described by a translation t with respect

to the center of coordinates of the baseline OD. This translation t corresponds to the extrinsic translation
estimated in the calibration of a pan-tilt-combination with respect to the baseline (explained in the previous
paragraph). The camera center OD is described by a translation u with respect to the PTU coordinate
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center, and a rotation R moves it to position OD
rt

(see Fig. 2). Thus we have in the coordinate system of
the PTU that:

OD
rt

= R · u

OD
rt

= u + t (4)

Note that there are multiple combinations of pan and tilt rotations (for different angles θ), and thus multiple235
R and t. The R for a specific angle θ can be re-written with respect to its axis r (in this case, only 2236
variables), using the Rodrigues formula as:237

R = (1− cos(θ))K2 + sin(θ)K + I (5)

where K2 = r · rT − I . Now, substituting R from Eq. (5) into the equality resulting by combining the238
two constraints of Eq. (4), and taking into account that the system has a total of N combination angles,239
the following minimization problem is formulated:240

argmin
r,u

∑
i∈[1,...,N ]

‖((1− cos(θi))(r · rt − I) + sin(θi)K) · u− ti‖ (6)

where the rotation axis is a unit vector, i.e. ‖r‖ = 1.241

The minimization with respect to the rotation axis r and the translation u is non-convex. However, the242
problem can be solved searching for the rotation axis and solving for the translation, using the interior-243
point method. Since the rotation axis has only two degrees of freedom, we use a change of variables to244
search over spherical coordinates as in (Bitsakos, 2010). The minimization cost for our stereo rig is shown245
in Fig. 4 where the minimum is marked on the sphere with a red star.246

The second part computes the rotation axis s of the DAVIS sensor coordinate system. Since the rotation247
vectors derived for positive and negative angles of pan and tilt were found of nearly same value (but248
different sign), we did not formulate another minimization, but estimated the axis by taking the average249
of the values for the first two components. Using the fact that s is a unit vector provides the third value.250

Finally, we obtain the following expression to compute for a given pan or tilt angle α the corresponding
rotation Rα and translation Tα in the DAVIS sensor coordinates:

Tα = ((1− cos(α))(r · rt − I) + sin(α)K) · u (7)

Rα = (1− cos(α))L2 + sin(α)L+ I (8)

where L2 = s · st − I . Please note that the rotation and translation of the DAVIS coordinate system is251
applied independently to pan and tilt rotations, and we have two different rotations and translations for252
pan and tilt angles, respectively (denoted as θ and φ in Fig. 2).253

Finally, the motion of the Pioneer 3DX Mobile Platform is always a translation in the horizontal plane254
in the direction of Z. For our case, we considered the coordinate centers of the Pioneer and the PTU to be255
aligned. Thus the translation of the mobile platform can be directly applied to the DAVIS sensor.256

The code for the extrinsic and intrinsic calibration of the DAVIS and the RGB-D sensors, their stereo257
calibration, and the calibration between the DAVIS and the Pan-Tilt Unit is provided along with the258
dataset.259

GENERATION OF MOTION FLOW FIELDS

The image motion flow field is the projection of the velocities of 3D scene points onto the image260
plane. Assuming a rigid motion (with translational velocity t = (t1, t2, t3) and rotational velocity w =261
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(w1,w2,w3)), the 3D instantaneous motion Ṗ of scene points P = (X, Y, Z) is given as Ṗ = −t− w× P262
(Longuet-Higgins and Prazdny, 1980). Then the equations relating the velocity (u, v) at 2D image points263
(x, y) to the 3D translation and rotation and the depth Z amounts to:264

u(x, y) = 1
Z (−t1f + xt3) + w1

xy
f − w2

(
x2

f + f
)
+ w3y (9)

v(x, y) = 1
Z (−t2f + yt3) + w1

(
y2

f + f
)
− w2

xy
f − w3x (10)

4 EVALUATION METHODOLOGY

The metrics we use to evaluate event-driven methods are similar to the ones previously used for frame-265
based techniques. Image motion flow fields will be evaluated using the average endpoint error (Baker266
et al., 2011; Otte and Nagel, 1994), which is defined as the average value of the vector distance between267
the estimated motion u and the ground-truth û, and is derived for N motion flow values as:268

AEPE =
1

N

N∑
i=1

‖ui − ûi‖. (11)

Another representative metric, the average angular error (AAE), measures the average angular distance269
as:270

AAE =
1

N

N∑
i=1

arccos

(
ûtiui
‖ûi‖‖ui‖

)
. (12)

We provide the code for computing the AEPE and AAE of a motion flow field. Similarly, we evaluate 3D271
camera motion (given by 3D rotation and translation vectors) as averages using the same measures, but in272
this case averaging over time.273

In order to evaluate the robustness of motion flow field estimation, we provide the RX value (Scharstein274
and Szeliski, 2002), which measures the percentage of estimates with an error above X. So the larger the275
value, the worse the motion estimation. In the Middlebury (Baker et al., 2011) evaluation, this measure276
is used with the endpoint error for R 0.5, R 1.0, and R 2.0. To evaluate the significance of the computed277
measure, we also provide a statistical significance test. We use the Wilcoxon signed rank test (Wilcoxon,278
1992), for which a p-value less than 0.05 shows statistical significance (see also (Sun et al., 2014; Roth279
and Black, 2005)).280

Different from frame-based flow, the flow from event-driven techniques is sparse. We also provide a281
measure for the sparseness of the estimation. The so-called density value expresses the percentage of282
motion estimates within a fixed time interval. In Computer Vision, although not common, optical flow283
density is considered in some works (see e.g. (Barron et al., 1994; Brandt, 1997; Barranco et al.,284
2012)).285

5 DATASET EXAMPLES FOR DAVIS SENSOR MOUNTED ON THE ROBOTIC
PLATFORM

We recorded more than 40 sequences of diverse scenarios, with the camera mounted on a Pan-Tilt unit286
on-board the Pioneer 3DX Mobile Platform. All the sequences are due to rigid 3D motions: pure pan or287
tilt motion, combined pan and tilt motion, translation of the robotic platform only (forward or backward288
translation), and combinations of pan, tilt and translation. The scenes are from an an office and have289

This is a provisional file, not the final typeset article 8



Barranco et al. A dataset for Visual Navigation with Neuromorphic Methods

a variety of objects of different sizes and shapes, such as chairs, tables, books, and trash bins. Texture290
was added to some of the objects to obtain a higher DVS event density. The depth is in the range of291
approximately 0.8 m - 4.5 m (also constrained by the use of Kinect), and the motion flow between frames292
(about 50 ms) is up to 5 - 10 pixels. There are a variety of rigid motions, including sequences that are293
mostly due to rotation, sequences that are mostly due to translation, and sequences with balanced rotation294
and translation.295

Fig. 5 shows a few of the sequences. The first row shows the DAVIS images, the second the depth maps,296
and the third the motion flow fields (using the color-coding of (Baker et al., 2011)). The first group of297
five images is from a pan and tilt motion, the last case on the top right and the first in the bottom left298
are from a pure zoom in and zoom out respectively. The last group at the bottom are from combined pan299
tilt and zoom in or zoom out motions, and the scenes are cluttered with objects of different shapes and300
at different depth ranges. The six parameters for the rotation and translation are shown below the figures.301
The complete dataset is available at the website.302

6 CONCLUSIONS

We presented the first datasets for evaluating techniques of visual navigation with neuromorphic sensors.303
These datasets contain synthetic and real sequences of rigidly moving sensors in static environments.304
The data, which we provide, includes the images, the event streams, the 3D depth maps, and the 3D305
rigid motion of the sensor. Using these datasets one can evaluate and compare event-based and classic306
frame-based techniques of image motion estimation, 3D motion estimation, scene reconstruction and307
segmentation by depth. We also provide the code for the various calibration procedures used in order to308
facilitate future data collection and code for evaluation.309

We plan to maintain the website, and add new more challenging sequences including a larger variation310
of scenes and dynamic scenes in the future. We also plan to evaluate and publish the results of different311
methods. So far we used the same evaluation metrics as in Computer Vision, which only address312
the accuracy of estimation. Since currently there are very few techniques available, the efficiency of313
computation on events has not been addressed yet. However, as new neuromorphic methods will be314
developed, and it becomes useful to evaluate and compare algorithms, we will also need to develop315
evaluation criteria aimed at the complexity of computation.316
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Figure 1. Left: Pan-Tilt Unit FLIR PTU-46-17P70T at http://www.flir.com/mcs/view/
?id=53707. Center: Pioneer 3DX Mobile Robot at http://www.mobilerobots.com/
ResearchRobots/PioneerP3DX.aspx. Right: DAVIS240b sensor at http://inilabs.com
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Figure 2. Left: Translation vector u of the DAVIS coordinate system with respect to the PTU, and r, the
PTU rotation axis. The pose of the DAVIS sensor is represented by its axis s. Right: DAVIS coordinate
system OD and PTU coordinate system OPTU . OD

rt
represents the DAVIS coordinate system after a

pan-tilt rotation of the PTU, characterized by a translation t and the rotation R around its axis r. Image
adapted from (Bitsakos, 2010).
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Figure 3. Depth registration from RGB-D sensor (top row) to DAVIS sensor (bottom row).

Figure 4. Visualization of the error function from the minimization for pan (left) and tilt (right). The
minimum error is marked on the sphere with a red star. The search is done in spherical coordinates over
the rotation axis r, which has two degrees of freedom. For each rotation we solve for the (best) translation.
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Figure 5. Example sequences from the dataset. For each sequence we show: DAVIS APS frame (first
row), depth map (second row), motion flow field (third row), and the rotation and translation values (in
10−2 rad/frame and 10−2 pix/frame). The color coding for the depth map uses cold colors for near and
warm colors for far points. The motion flow fields are color-coded as in (Baker et al., 2011), with the hue
representing the direction of motion vectors and the saturation their value.
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