
Multicore In Real-Time Systems – Temporal
Isolation Challenges Due To Shared Resources

Ondřej Kotaba∗, Jan Nowotsch†, Michael Paulitsch†, Stefan M. Petters‡ and Henrik Theiling§
∗Honeywell International, s.r.o., Aerospace Advanced Technologies, Czech Republic, ondrej.kotaba@honeywell.com

†EADS Innovation Works, Germany, [jan.nowotsch,michael.paulitsch]@eads.net
‡ISEP, Polytechnic Institute of Porto, Portugal, smp@isep.ipp.pt

§SYSGO AG, Germany, hth@sysgo.com

Abstract— Recent advent of multicore platforms, along with
associated desire for porting of aerospace applications to such
platforms, pose a significant challenge for real-time execution.
Sharing the on-chip resources introduces low-level temporal
effects that impact the execution time determinism by a multitude
of mechanisms. We discuss such mechanisms in this paper
and we outline possible approaches to mitigate them or bound
their temporal impact. We assume a mixed-criticality real-time
environment, as is typical in aerospace applications; it is however
also applicable to similar use cases in automotive and industrial
control.

I. INTRODUCTION

In a single-core real-time domain, ensuring the temporal
isolation and sufficient execution time determinism is a critical,
but nevertheless a well solved task. Many mechanisms to
ensure execution time determinism employed therein assume
sequentiality of application execution. To account for non-
deterministic disturbances, such as interrupts, with carefully
analysed temporal impact, additional amount of slack exe-
cution time is added. Applications are not in fact executed
in parallel, but frequent context switches are performed to
provide each application sufficient share of resources per the
allocated time unit. Effectively, a Time Division Multiple
Access (TDMA) partitioning of entire processor, with ex-
ceptions, is achieved. While those exceptions have temporal
effects, such as Direct Memory Access (DMA) transfers and
associated contention for memory bus, there typically exist
well-known solutions for those and their deployment is very
limited. For the mentioned case of DMA transfer, it can for
example be achieved by replacing the DMA transfer by CPU-
controlled approach, often without significant effect on the
performance.

Transitioning to multicore, the assumption of sequential
execution cannot be safely made any more - the applications
actually run in parallel and the access of applications to
resources is not exclusive anymore. In multicore domain, the
applications compete for resource access, typically arbitrated
in a non-explicit manner by the specific hardware imple-
mentation. This causes non-deterministic temporal delays to
the execution. It is the goal of this paper to systematically
analyse the effects and suggest mitigation techniques, where
possible. A subset of the effects described in this paper might
be present in each particular processor architecture. It is the
intent that anybody takes the paper as guideline and inspiration

for their analysis of a specific multicore processor to achieve
completeness of possible effects.

In some cases, we distinguish between the domain of mi-
crocontrollers and General Purpose Processors (GPPs), where
different criteria drive the design.

In Section II of this paper we describe the specific mech-
anisms causing temporal delays in commercial-off-the-shelf
(COTS) multicore processors.

In Section III, we mention mechanisms and methods that
can be used to maintain the deterministic execution needed for
real-time applications. Those either implement mechanisms to
prevent or control the access to resources in a deterministic
manner, or evaluate the maximum temporal impact of resource
sharing. The latter, in most cases, results in extreme pessimism
of the worst-case response time (WCRT), but for some effects
it is perfectly feasible.

Some of the resources in a typical COTS processor are
difficult to arbitrate by other means than by direct hardware
implementation. Such mechanisms, however, are nowadays
not found in typical high-performance COTS general purpose
processors optimized for maximum average-case performance.

In Section IV, we list some promising methods for such
cases, requiring further research.

II. TEMPORAL EFFECTS OF RESOURCE SHARING

Any typical high-performance multicore COTS processor
on the market today will share some or all of the following
on-chip resources, such as: System bus, Memory bus and
controller, Memories, Caches, Intelligent on-chip resources
(e.g. DMA controller, Graphics Processing Unit (GPU), Inter-
rupt controller, etc.), Supporting on-chip logic (e.g. Coherency
mechanism, Transaction Look-aside Buffers (TLBs), etc.), I/O
devices, Pipeline stags, Logical units, and other devices.

The specific effects were identified, that affect the temporal
determinism; see Table I for overview. Detailed description of
the respective effects follows.

A. System bus

While definition of this term might vary depending on
HW platform provider, we consider here as system bus the
interconnect tying together the CPU cores in a multicore
system, connecting them to the memory bus or shared caches,
as well as other devices. Depending on the HW architecture it

mailto:ondrej.kotaba@honeywell.com
mailto:jan.nowotsch@eads.net;michael.paulitsch@eads.net
mailto:smp@isep.ipp.pt
mailto:hth@sysgo.com


TABLE I
UNDESIRED MECHANISMS AFFECTING THE TEMPORAL DETERMINISM

Shared
resource

Mechanism

System bus Contention by multiple cores
Contention by other device - IO, DMA, etc.
Contention by coherency mechanism traffic

Bridges Contention by other connected busses

Memory bus
and controller

Concurrent access

Memory
(DRAM)

Interleaved access by multiple cores causes address
set-up delay
Delay by memory refresh

Shared cache Cache line eviction
Contention due to concurrent access
Coherency: Read delayed due to invalidated entry
Coherency: Delay due to contention by coherency
mechanism read requested by lower level cache
Coherency: Contention by coherency mechanism on
this level

Local cache Coherency: Read delayed due to invalidated entry
Coherency: Contention by coherency mechanism read

TLBs Coherency overhead

Addressable
devices

Overhead of locking mechanism accessing the
memory
I/O Device state altered by other thread/application
Interrupt routing overhead
Contention on the addressable device - e.g. DMA,
Interrupt controller, etc.
Synchronous access of other bus by the addressable
device (e.g. DMA)

Pipeline stages Contention by parallel hyperthreads

Logical units Contention by parallel applications

Other platform-specific effects, e.g.
BIOS Handlers, Automated task migration, Cache
stashing, etc.

may also connect to further buses like, Peripheral Component
Interconnect (PCI) or I/O interconnects. The connection of
several buses requires the deployment of interconnect bridges.

The contention here is driven by a usually fine grained and
– unless explicitly managed – in principle highly varied access
pattern to this common resource. One source of these accesses
include the different cores, where the accesses are largely a
function of cache misses. Depending on the implementation
of the cache coherence mechanisms of the core local caches,
these might also be routed through the system bus. Asyn-
chronous access through DMA traffic forms a further impact
on the predictability of system bus usage. In general the access
to the system bus is managed by a HW arbiter, which grants
access to the shared resource. The policy employed is quite
often based on FIFOs, where contending accesses are served
in a round robin fashion.

B. The memory, memory bus and controller

In general a program requires some memory for its exe-
cution, either for reading its instructions, writing its results

or both. Hence if multiple processor cores are organised in
a physically shared memory architecture1 they interfere on
multiple units on the path between the processor core itself
and the main memory, e.g. interconnect, shared caches and
memory controller. The common issue for all of these units is
concurrent access by multiple processor cores. Interleaved ac-
cesses and refresh delays are specific issues for main memory
in general and dynamic RAM respectively.

Concurrent access by multiple cores to one unit causes
additional delays, depending on the units capabilities for
parallel service. For instance, if a Network-on-Chip (NoC) has
enough channels to serve all of the connected processor cores
concurrently, accesses might not be an issue. In either case an
arbitration policy is required to decide which requesting core
to serve first, if multiple requests are outstanding. Depending
on the selected arbitration policy the influence on determinism
is more or less problematic. For example TDMA arbitration
is not an issue for determinism since maximal latency can be
guaranteed. Other policies such as round robin can possibly
be used in an deterministic manner, depending on how fine
grained accesses to the resource can be controlled. Policies
that allow starvation of processor cores are impossible to be
analysed since no maximal latencies can be defined.

The problem of interleaved accesses to main memory
might cause additional delays for cores if they operate on
different memory pages, forcing the controller to continuously
open/close new pages. Depending on the number of parallel
open pages this might be a more or less critical problem. In
terms of determinism one would need to account accesses with
the theoretical maximum delay, as long as an exact knowledge
of which accesses might collide at the memory controller is
not available.

Additional delays due to memory refresh cycles are an issue
for dynamic memory only. They are not a new topic and also
needed to be considered for single core processors in the past.
Hence we do not discuss them any further.

C. The cache

Due to the huge overhead of accessing memory on modern
architectures, CPUs use cache memories to temporarily store
data in faster, yet somewhat smaller memories, for quick ac-
cess. Today, multi-layer cache hierarchies are well-established
where for each additional layer, size and access time increase.
In multicore architectures the first level (L1) cache is typically
local to each core, i.e. not shared. Of course, the main memory
is shared among all cores. Depending on the architecture,
intermediate levels (e.g. L2) may be core-local or shared.

For cores to communicate via shared memory, cache con-
tents should be kept coherent, i.e. if one core is writing to
main memory, this change must be reflected in the other
core’s caches if the corresponding memory region is used
for communication. Such shared memory is a fast way of
communication, but such sharing also has an impact in the
timing of each core’s access to the shared memory region.

1compared to virtually shared, physically distributed memory systems



There are several different kinds of effects that shared
memory and shared caches have on timing. The most obvious
is the simple bottleneck effect of accessing one memory or
cache from several cores at the same time. Typically, access
will be serialized, i.e., one core will wait for the other to
finish access to the shared memory or cache before accessing
it by itself, thereby being slowed down compared to a non-
concurrent access [1].

An indirect effect of using a shared cache is that by writing
to a cache, one core may evict data that another core has
previously stored in the cache, because each cache only has
a limited size. The caching effect is thus reduced when more
and more cores access a shared cache. The next access to the
evicted data will thus be slow again, while it would have been
quick if no other core had written to the same cache location.

Keeping cache content coherent induces another, potentially
significant slowdown to the cache access: if one core writes
to a memory location, read accesses from other cores need
to take this into account, i.e. cache content of a core’s local
caches will have to be invalidated by a write operation from
another core. Such enforcement of coherency has several
effects. There is the direct slowdown because a cache entry
has been invalidated, and data has to be updated. This access
can, again, lead to contention of the system and/or memory
busses due to concurrency from other cores. Also, the busses
needed for the coherency protocol itself may be contended if
many write operations occur.

In all of these situations, additional to the concrete slow-
down when executing the application on the hardware, each
of the mentioned effects will also make a static worst-case
execution time (WCET) analysis more pessimistic, especially
on complex architectures were it is not possible to statistically
add an expected slowdown to result of the WCET analysis
performed under a single core assumption. On complex archi-
tectures, taking into account potential pipeline domino effects
(as described in [2]) may make the static WCET analysis very
difficult and pessimistic. Since such static WCETs are the basis
for high-criticality task scheduling, pessimism has the same
effect as concrete slowdown, as the corresponding resource
has to be reserved.

D. Logical units, pipeline stages

Modern MPSoC use hyperthreading, where seemingly dif-
ferent cores actually use the same execution units and/or share
caches (like instruction caches). This introduces timing effects
at the instruction level. This is because one virtual core blocks
and delays the execution of another virtual core that it is paired
with for the specific resource. Similarly, logical units, co-
processors or Graphic Processing Units (GPUs) in a MPSoC
can be shared. The sharing of such units leads to possible
delays in the execution of different cores accessing the same
unit. Depending on the implementation of the scheduling unit
responsible for sharing the unit, the delay can be significant
or even lead to starving of one core in case the scheduling
unit does not implement some level of fairness.

E. Addressable devices

Apart from cores and memories, there may be addressable
devices on the same shared interconnecting bus, like I/O
devices, interrupt controllers, or DMA controllers. In multicore
settings, access to these devices may be more complicated.
Assuming that multiple cores have access to a shared address-
able device, exclusive access has to be achieved in order to
maintain a consistent state of the shared device.

To ensure exclusive access, locking mechanisms have to
be used. In single core situations, highest priority (e.g. ker-
nel level execution) is enough to ensure exclusive access.
With truly parallel execution, this is no longer true, and
typically, spinlocks are used to serialise access in device
drivers. Spinlocks have an obvious overhead compared to
single core execution when they lock, i.e., all but one core
will have to wait. Additionally, spinlocks are shared memory
data structures, so all the effects of shared memory, coherent
caches, etc., apply here, too.

Another type of interference stems from DMA controllers
that autonomously access a shared bus. Those act similar to
another core with respect to bus usage and contention. This is
however not fundamentally a multicore effect.

In multicore systems, interrupt controllers are typically
more advanced than in single core systems, as the interrupt
controller usually has the ability to map interrupts to different
cores, depending on requesting device, preference and priority
settings, and possibly load. As a rare example, such advanced
interrupt routing techniques may reduce temporal influences
on multicore systems compared to single core systems: with
multiple cores, interrupts can be routed to other cores, so that
temporal influence on a critical task may be minimised.

On the other hand, operating systems for multicore systems
running in an Symmetric MultiProcessing (SMP) setting may
need to create additional core to core interrupts (door bell
interrupts) for managing the system like synchronising TLB
entries, if the hardware lacks support for TLB synchronisation,
or in order to wake up waiting tasks on other cores. This may
again lead to additional temporal influence.

F. Other effects

Depending on the specific platform, there are other effects,
some not multicore related, that influence system’s temporal
behaviour. Such effects might include BIOS handlers and mi-
crocode, such as emulation microcode, or automated frequency
multiplier setting to minimize power consumption.

Other, new, additional effects might be however included to
improve the average case performance, thermal efficiency, et
cetera, that are clearly related to multicore. Such effects in-
clude, for example, any automated process migration capabil-
ity, as being currently studied by various platform developers,
cache stashing functions, and various others. Any temporal
effect of such additional effects must however be analysed on
the case-by-case basis.



III. MITIGATION OF EFFECTS OF RESOURCE SHARING

This section outlines possible methods capable of mitigating
the undesired effects described in Section II. It is not to be
taken as exhaustive list but rather as a discussion on possible
approaches to treat them.

A. System bus

So far the most common solution to solve the contention
on the system bus in the avionics domain has been through
disabling all but one core in the system and avoiding asyn-
chronous DMA and I/O traffic. However, this obviously does
not exploit the performance gains offered by multicore chips.

In terms of cache coherence protocols, some platforms
provide a separate interconnect for this. However, while de-
coupling the cache coherence from general system bus usage
is helpful, it only reduces the problem, but fundamentally
does not solve the issue. The same is true for using different
memory banks to parallelise the access to memory. Again,
this reduces the problem in terms of magnitude of average
interference, but the issue remain.

Some approaches propose to use more deterministic arbitra-
tion scheme to access the shared system bus. One example is
the use of priorities in bus accesses. However, such arbitration
schemes are not to be found in COTS hardware due their
potential detrimental impact on average-case execution time.
Even when implemented in custom hardware, they need to be
complemented by work in the analysis process to demonstrate
that the latencies are within certain limits.

Current ongoing work in the ARAMiS project [3], [4] aims
to limit the interference of different bus masters on each other,
by means of monitoring the number of accesses and denying
access (i.e. stalling) when the number of accesses in a certain
time window reaches a limit. Also coarse grained windows
of access are a conceivable alternative, but so far have not
been explored in detail. Recent work within the RECOMP
project aims to provide approaches to bound the impact of
this contention via the use of measurements to force worst-
case scenario [5] or analytical means [6].

B. The memory, memory bus and controller

To deal with concurrency on shared resources we identified
multiple different solutions. Beneath the obvious approaches
to disable parallel acting cores and assuming the worst-case
influence during timing analysis the following alternatives are
known: (1) fully parallel design, (2) deterministic arbitration
(3) execution models, and (4) resource limitation. The first
two approaches are completely hardware dependent. Hence,
they can not be added to a given COTS device if they are
not already available. As an example Rosen et al. focuses on
TDMA bus arbitration policies [7].

Approaches following the third alternative define deter-
ministic schemes of how applications are allowed to use a
shared resource. The basic concept of Schranzhofer et al. [8],
Pellizzoni et al. [9], and Boniol et al. [10] is to define different
application phases of local computation and communication
using shared resources. For example Schranzhofer et al. [8]

split applications in acquisition, execution and replication
phases and compare different schemes, changing the permis-
sions of the phases to communicate via shared resources. In
[9] Pellizzoni et al. introduce the PRedictable Execution Model
(PREM). They split a program into predictable and compatible
intervals, requiring all code and data of predictable intervals to
be preloaded into core-local caches, further prohibiting system
calls and interrupts. Peripheral traffic is only allowed during
the execution of predictable intervals. Although their work
is based on single core processors, mainly addressing the
problem of shared usage of central interconnect by processor
core and peripheral devices, its concepts can be adopted
for multicore systems. Boniol et al. [10] use comparable
approach but are focused on multicore, studying tool support
for realisation of such an architecture.

Resource limitation is a mechanism that somehow extends
processor time scheduling by additional dimension for the
shared resources, such as interconnect. In [11], [12] Bellosa
proposes to use hardware performance counters to acquire
additional application runtime informations, such as cache hits
and misses. This idea has been adopted recently by Yun et al.
[13] and Nowotsch et al. [3] for the use in real-time systems.
Yun et al. use performance counters to get information on the
memory accesses behaviour of threads to separate real-time
and non-real-time threads. Their main focus is on schedul-
ing threads such that the influence of limiting non-real-time
threads by their memory accesses is minimal. Nowotsch et
al. [3] propose to use the additional runtime information for
WCET analysis focused on mixed-criticality, safety-critical
application domains, as avionics. Since the WCET of most
applications is memory bound, they split the accesses of
an application depending on their latency, which generally
depends on the number of concurrently acting masters on an
interconnect. By analysing the worst-case number of accesses
they are able to safely assume different delays for memory
accesses, which reduces the WCET of an application, com-
pared to naive approaches that assume the worst-case latency
for every memory access.

Interleaved accesses by different processor cores and the
resulting additional delays can be addressed either by pes-
simistic assumptions for WCET analysis or by the mapping
of applications to memory. Of course pessimistic assumptions
result in less tight WCETs which reduce overall system
utilisation, since the assumed cases only happen very rarely
during normal execution. Hence the second approach seems
more attractive. The idea is to map application memory spaces
such that they can not interfere, since they for example do not
share physical pages in the main memory. The problem here is
the granularity of such mappings and the fact that they might
be very platform specific.

C. The cache

Ideally, cross-core cache effects would be predictable. There
are some attempts to analyse the behaviour [14], sometimes
proposing special hardware. [15]. Still, prediction is difficult.



To overcome timing effects introduced by shared caches in a
multicore system, the following techniques may be applied.

The easiest, yet seldom feasible, approach is to disable
caching. Due to severe slow-down of memory access, it is
deemed unrealistic. More fine-grained mechanisms are needed.

To minimise cache coherency influences, many architectures
allow cache coherence to be selectively switched off. It may be
that weaker memory models are applicable to the software in
use, so switching off coherence may be a feasible approach. In
some cases, software coherence protocols can be used instead,
and will lead to be more predictable behaviour. [16]

Cache coherence problems only occur with shared memory,
i.e., when communication among cores is based on shared
memory. Instead, other mechanisms may be available from the
operating system or even in hardware, i.e., message passing.
This will remove any coherence effect, yet requires rewriting
algorithms, and may require memory copying or TLB syn-
chronisation among cores, depending on implementation.

There are also techniques to minimise the cache eviction
problem. One of them is cache partitioning. Software imple-
mentation can be feasible, depending on cache architecture and
capabilities of the Memory Management Unit (MMU) [17],
[18], or directly in hardware.

D. Logical units, pipeline stages
One example of dealing with hyperthreading is via analysis

level, which is applicable for some hyperthreading architec-
tures and when the source code is relatively simple, determin-
istic, and known. Popular solutions for analysing applications
on multicore and multithreaded processors are

1) a joint analysis and
2) trying to analyse applications apart from each other, as

previously done for single-core processors.
Joint analysis techniques analyse all tasks against each other
to determine overlaps and influences in terms of accesses to
shared resources [10], [19]–[21]. Since task sets can be very
complex and timing variations within an analysed task set
requires to analyse the new task set. Hence joint analysis tech-
niques are of high complexity, requiring significant processing
time, or make infeasible assumptions.

Another approach to use hyperthreading architectures is to
simple disable one of the virtual cores so that the hardware is
not shared any more. This is a simple but effective solution,
at least until temporal effects of hyperthreading are better
understood.

For shared external units (logical units, co-processors,
GPUs), one possible approach is to implement a server in
software. This server manages the accesses to the shared
resource. Depending on the shared resource, the approach can
be quick enough and feasible; one of the possible approaches
to such software arbitration is using the time-slot partitioning.
Hardware-implemented sharing approaches depend on the
hardware available and are very processor-specific.

E. Addressable devices
Problems introduced by addressable devices as stated above

can be avoided by software and hardware. First of all, access

to such devices may be handled by a driver, i.e. by a software
layer. However, in many situations, the impact of a solution
on performance is too large.

Modern multicore hardware offers fine-grained access con-
trol via Input/Output Memory Management Units (IO-MMU),
so for example a DMA controller can be directly accessed
by an application, while still the effects on critical memory
regions can be controlled.

Another approach is to use the virtualization, such as
is typical for the high-end network interface devices. The
shared device itself provides multiple parallel logical interfaces
and is capable of routing the data to appropriate dedicated
cores. Specific analysis and careful application design must
be performed in such cases to ensure that assumptions taken
by the device manufacturers are met.

One of the problems with arbitrating the access to such
devices is the stateful nature of some such devices, often
disallowing truly interleaved access. Usage of such devices
in the realtime domain is typically limited to a single thread;
otherwise the software driver mentioned above can be used.

F. Other effects

Any effects described in the Section II-F must be studied
on the case-by-case basis. Typically, the platform developer
makes it possible to disable such effects by means of con-
figuration. Cache stashing might improve the overall average
case performance, but the non-determinism introduced by
its function would need to be precisely quantified to be
useful in the multicore domain. Setting of any thermal-related
capabilities, with exception of fuse-type protective functions,
would probably be chosen fixed or pre-set, with any dynamic
behaviour minimized.

IV. OPPORTUNITIES FOR FURTHER RESEARCH

Multicore shared resources, however, not only pose issues,
but also provide new opportunities when the additional re-
sources are used in novel ways. For example, multi-threading
architectures are traditionally used to gain performance. In
systems where the worst case and determinism is a major
concern, replicated resources like pipelines can be used to
preload values into cache for the other pipelines to execute
deterministically. Such approaches are very computing archi-
tecture specific. Research on automatic approaches to leverage
such features can help achieve better WCET.

The MultiProcessor System-on-Chip (MPSoC) devices are
considered very complex by certification authorities [22] and
contain a lot of complex parts where special approaches, like
safety nets, are needed to compensate for the complexity.
Despite of this, some key information for fully understanding
the design is often still missing and hard to access by the
avionics industry due to the protective behaviour of silicon
vendors and designers to maintain their competitive advantage.
The avionic industry joined forces and works with silicon
vendors where it can to compensate this deficiency by better
understanding respective MPSoC. One group addressing this
is the Multi-Core For Avionics (MCFA) working group [23].



The MCFA has been meeting regularly to address concerns
of avionics companies towards leveraging MPSoC devices in
future aerospace products.

The methods that require further research before they can
be practically implemented can be found in the areas of
preventing the non-determinism caused by memory and system
bus. As described in III-B, research opportunity lies in pro-
viding mechanisms to time-partition the access to the shared
memory, either using cooperative scheme (similar to PREM
model described therein) or using some sort of TDMA access
arbitration on software level. Similar methods could then also
be used for addressing the system bus sharing effects, as
mentioned in III-A.

V. CONCLUSION

Many of the problems described in the Section II are well
discussed by research community. There is however a lack of a
unifying approach resulting in a combination of solutions that
would, for a specific platform, solve all the outlined problems.

In the area of microcontrollers, typically designed for worst-
case execution performance, many of the problems are solved
on hardware level, at the cost of overall performance.

For GPPs, which care typically used in cases when higher
performance is needed, several of the problems identified are
not sufficiently addressed in hardware. Namely, that includes
the effects of sharing the system bus, memory bus, memory
controller and the memory itself.

For some specific usage domains, solutions are in quite
mature stage. Most of them center around minimizing the use
of shared resources, such as memory, and maximizing core-
local resource usage, like caches, to avoid interference. Others
only use selected cores to avoid contention. This is not always
possible and not very efficient. For such cases, we propose that
further research is done in the field of software arbitration
of resource access. It is also likely that new programming
paradigms will be needed in order to take into account the
limited possibility of the applications to access such shared
resources.

ACKNOWLEDGMENT

This paper has been supported by ARTEMIS JU as part of
the RECOMP project under grant agreement number 100202,
national contract number 01IS10001 of German Ministry of
Research and Education, national contract number of 7H10007
of Czech Ministry of Education, Youth and Sports, and con-
tract number ARTEMIS/0202/2009 of Portuguese Foundation
for Science and Technology. We appreciate the fertilizing
discussions with RECOMP partners.

REFERENCES

[1] R. Pellizzoni, A. Schranzhofer, J.-J. Chen, M. Caccamo, and L. Thiele,
“Worst-Case Delay Analysis for Memory Interference in Multicore
Systems,” in Proceedings of the Conference on Design, Automation and
Test in Europe (DATE), 2010, pp. 741–746.

[2] C. Cullmann, C. Ferdinand, G. Gebhard, D. Grund, C. M. (Burguière),
J. Reineke, B. Triquet, and R. Wilhelm, “Predictability Considerations
in the Design of Multi-Core Embedded Systems,” in Proceedings of
ERTSS, 2010, pp. 36–42.

[3] J. Nowotsch, M. Paulitsch, D. Bühler, H. Theiling, S. Wegener, and
M. Schmidt, “Monitoring-based shared resource separation for com-
mercial multi-core system-on-chip,” unpublished, in submission to DSN
2013, 2013.

[4] ARAMiS Project, “Automotive, Railway and Avionics Multicore Sys-
tems - ARAMiS,” http://www.projekt-aramis.de/.

[5] J. Nowotsch and M. Paulitsch, “Leveraging multi-core computing archi-
tectures in avionics,” in Proceedings of the 9th European Dependable
Computing Conference, May 2012, pp. 132–143.

[6] D. Dasari, B. Andersson, S. M. P. Vincent Nelis, A. Easwaran, and
J. Lee, “Response time analysis of cots-based multicores considering
the contention on the shared memory bus,” in in IEEE 10th Interna-
tional Conference on Trust, Security and Privacy in Computing and
Communications (TrustCom), Nov. 2011, pp. 1068–1075.

[7] J. Rosen, A. Andrei, P. Eles, and Z. Peng, “Bus access optimization for
predictable implementation of real-time applications on multiprocessor
systems-on-chip,” Proceedings of the 28th IEEE International Real-Time
Systems Symposium, pp. 49 – 60, 2007.

[8] A. Schranzhofer, J.-j. Chen, and L. Thiele, “Timing predictability on
multi-processor systems with shared resources,” Embedded Systems
Week - Workshop on Reconciling Performance with Predictability, 2009.

[9] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and
R. Kegley, “A predictable execution model for COTS-based embedded
systems,” Proceedings of the 17th IEEE Real-Time and Embedded
Technology and Applications Symposium, pp. 269 – 279, 2011.

[10] F. Boniol, H. Cassé, E. Noulard, and C. Pagetti, “Deterministic exe-
cution model on cots hardware,” Proceedings of the 25st international
conference on Architecture of computing systems (ARCS), pp. 98–110,
2012.

[11] F. Bellosa, “Process cruise control: Throttling memory access in a soft
real-time environment,” University of Erlangen, Tech. Rep., 1997.

[12] ——, “Memory access - the third dimension of scheduling,” University
of Erlangen, Tech. Rep., 1997.

[13] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “Memory
access control in multiprocessor for real-time systems with mixed
criticality,” Proceedings of 24th Euromicro Conference on Real-Time
Systems (ECRTS), pp. 299 – 308, 2012.

[14] J. Yan and W. Zhang, “WCET analysis for multi-core processors
with shared L2 instruction caches,” in IEEE Real-Time and Embedded
Technology and Applications Symposium, April 2008, pp. 80–89.

[15] D. Hardy, T. Piquet, and I. Puaut, “Using bypass to tighten WCET
estimates for multi-core processors with shared instruction caches,” 30th
IEEE Real-Time Systems Symposium, pp. 68–77, 2009.

[16] W. J. Bolosky, “Software Coherence in Multiprocessor Memory Sys-
tems,” Ph.D. Thesis, 1993.

[17] D. Kaseridis, J. Stuecheli, and L. K. John, “Bank-aware Dynamic
Cache Partitioning for Multicore Architectures,” in Proceedings of the
International Conference on Parallel Processing, 2009, pp. 18–25.

[18] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sadayappan, “Gaining
Insights into Multicore Cache Partitioning: Bridging the Gap between
Simulation and Real Systems,” in Proceedings of the 14th Intl Symp. on
High-Performance Computer Architecture (HPCA), 2008, pp. 367–378.

[19] Y. Li, V. Suhendra, Y. Liang, T. Mitra, and A. Roychoudhury, “Timing
analysis of concurrent programs running on shared cache multi-cores,”
30th Real-Time Systems Symposium, pp. 638–680, Dec. 2009.

[20] P. Crowley and J.-L. Baer, “Worst-case execution time estimation of
hardware-assisted multithreaded processors,” 2nd Workshop on Network
Processors, pp. 36–47, 2003.

[21] P. Radojković, S. Girbal, A. Grasset, E. Quiñones, S. Yehia, and F. J.
Cazorla, “On the evaluation of the impact of shared resources in
multithreaded COTS processors in time-critical environments,” ACM
Transactions on Architecture and Code Optimization, pp. 34:1–34:25,
Jan. 2012.

[22] EASA, “Certification memorandum - development assurance of airborne
electronic hardware (Chapter 9),” Software & Complex Electronic
Hardware section, European Aviation Safety Agency, CM EASA CM -
SWCEH - 001 Issue 01, 11th Aug. 2011.

[23] Freescale, “Freescale collaborates with avionics manufacturers to fa-
cilitate their certification of systems using multi-core processors: New
working group focusing on commercial off-the-shelf multi-core process-
ing used in commercial avionics,” Press release, Sept. 2011.

http://www.recomp-project.eu/
http://www.recomp-project.eu/

	Introduction
	Temporal Effects of Resource Sharing
	System bus
	The memory, memory bus and controller
	The cache
	Logical units, pipeline stages
	Addressable devices
	Other effects

	Mitigation of Effects of Resource Sharing
	System bus
	The memory, memory bus and controller
	The cache
	Logical units, pipeline stages
	Addressable devices
	Other effects

	Opportunities for further research
	Conclusion
	References

