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Abstract— This article is a summary of the main results1 of the 

RECOMP project in certification and qualification topics. 

Work package 4 in RECOMP has made contributions in 

amendments in safety standards, including multicore specific 

hardware and software requirements and addressed the need 

for additional methods and techniques. Cost-effective 

certification has also been a main topic in WP4 work.  

Current safety standards provide a well defined reference 

in most generic and domain-specific safety issues. However, 

they are not complete and accurate enough in certifying 

multicore platforms and applications. By definition, standards 

are somewhat behind of leading edge already at the moment 

when they are published. Multicore specific methods, 

techniques and tools are mainly additional details as 

certification criteria, missing in current safety standards.  
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I.  INTRODUCTION  

Certification and qualification of safety-critical systems 
ensure that the systems are suitable for their intended use. 
These activities involve the provision of objective evidences 
to demonstrate with the level of confidence required by an 
applicable standard that the systems will behave as intended. 
The greater the potential consequences in the event of failure 
of the systems, the higher the required level of confidence 
becomes, which generally result in higher costs. Work 
Package 4 of the project RECOMP (Reduced Certification 
Costs Using Multicore Platforms) addresses certification and 
qualification aspects of safety-critical systems and software. 
Based on a subset of safety requirements from RECOMP 
WP1, WP4 has defined different approaches with the goal of 
reducing certification and re-certification costs of safety-

                                                           
1
 The methods and tools discussed in this article have been evaluated, 

improved, or developed by different RECOMP partners for addressing 

multicore issues, and not by the authors of this article, whose mere 
contribution was to briefly enumerate them. 

critical systems, as well as enabling the qualification and 
certification of multicore systems. This paper enumerates the 
WP4 findings that target the automotive and industrial 
automation domain, which are described in more details in 
the two project deliverables: Standards Amendment targeting 
multiple processor safety systems (SMP, AMP) [1]  and 
Development process amendments to achieve a robust and 
safe development [2]. The former is a set of results and 
findings about the need to include multicore specific 
requirements in IEC61508 and other safety standards, while 
the latter describes needs in development process itself and 
how methods and tools can support robust and cost-effective 
system development and certification.  

II. TOWARDS NEW CERTIFICATION APPROACHES 

A. Integrated use of safety standards in qualification and 

certification 

Safety is presented in many ways in current standards. In 
some standards safety is only implicit, without being 
mentioned. It can be even avoided, so that the standard does 
not get any flavor from the safety domain. A good example 
is assurance case standard ISO/IEC15026, which can be 
directly applied for safety case. The safety community has 
much to learn from a large set of “non-safety” standards; 
how to use them and how to write reusable standards. 

In some other standards, safety is the main focus area, 
and any other topic may be avoided (e.g. security). Good 
example is ISO26262 [5]. It is quite directly derived from the 
main functional safety standard IEC61508 [3], adding a lot 
of automotive specific details and requirements. Similar 
standards are developed for avionics, nuclear power, medical 
electronics and various other domains. 

Safety can be evaluated using several basic approaches. 
The key output, the system and/or software product, can be 
assessed against a predefined set of safety requirements. 
Safety assessment approach covers both the product and the 
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process characteristics and properties. Process assessment 
focuses typically on the product development phase. All 
these approaches produce valuable information in building 
trust on the safety of the product. So far, harmonization of 
different approaches is missing in certification and 
qualification of safety-critical hardware and software. 

RECOMP project has developed an integrated method, in 
which product evaluation, safety assessment and process 
assessment can be combined. This method is based on 
systematic collection and classification of evidences, so that 
they are collected only once but can be reused for different 
qualification and certification approaches. It saves costs in 
the typically laborious data collection phase. The main 
skeleton for integrated method is ISO/IEC15504 standard for 
process assessment [4]. It has also extension for safety 
management, safety engineering and tool qualification 
processes. Methods are an essential part of evidences in a 
typical certification case.  

B. Pre-certified and reusable elements in systems  

Safety functions are normally realised by subsystems. 
Typical safety function consists of the three subsystems 
sensor, logic unit and actor (see Fig. 1).  

 

Figure 1.  Fig. 1 Parts of a typical safety function 

These subsystems consist of elements. An element is 
defined according to ISO26262-1:2011 as a system or part of 
a system including components, hardware, software, 
hardware parts and software units. The IEC61508-4:2010 
defines an element as part of a subsystem comprising a 
single component or any group of components that performs 
one or more element safety function. The definitions are 
oriented on the behaviour of a functional unit without the 
definition of physical limitations. Therefore it is possible to 
define generic elements with generic safety functions 
participating on an overall application specific safety 
function.  

Typical generic elements with a generic safety function 
are for example a microcontroller, an operating system, 
software libraries or power supply units. Generic elements 
should be qualified and certified for the use in safety relevant 
applications without knowledge of the final safety function. 
The terms compliant item according to IEC61508-4:2010 or 
safety element out of context according to ISO26262:2011 
can and should be used. 

 In general, the development and design of generic safety 
elements has to follow the requirements of safety standards 
for avoidance and control of systematic faults as well as the 
robustness for random faults. There are some effects to be 
considered when safety elements are combined. In principal 

it is possible to reach a higher risk reduction by combining 
already pre-certified elements in parallel for a redundant 
operation. But this is only valid for the influence of random 
faults. For instance, if two homogenous elements are used in 
parallel a systematic fault will affect both elements at the 
same time. Therefore it is necessary to combine elements 
with a sufficient independence to be also robust against 
systematic faults.  

The main benefit of using pre-certified safety elements is 
the simple reuse of these elements in different safety 
applications without a re-assessment of the basic element 
functionality. Furthermore, higher risk reduction levels could 
be reached by combining these elements. The main 
requirements for a pre-certification are to tailor the 
development process depending on the safety element and to 
provide the necessary information for the system integrator 
in the safety manual. 

III. MULTICORE IN EMERGING SAFETY STANDARDS 

The IEC61508 standard describes various safety 
requirements as well as fault avoidance and fault control 
measures that could be used during a safety-related system 
development process and in the system design to reduce the 
possibilities of random hardware failures and systematic 
failures that would compromise the functional safety of the 
system. However, the IEC61508 requirements are stated in a 
rather generic manner and do not sufficiently address 
multicore system development.  

Isolation, separation and independence of safety and non-
safety-related functions as promoted by the IEC61508 
standard are areas in which the use of multicore technology 
in safety-related applications is experiencing the most 
difficulties. Multicore platforms provide the possibility to 
realise mixed-criticality applications on multicore platforms. 
However, the contention of shared resources inherent to 
multicore system may lead to concurrency and 
synchronization issues such as latency, jitter, throughput, 
lockout and deadlock [6], which could significantly 
undermine the determinism or integrity of the system design. 
Performance and control stability may also be compromised 
due to problems associated with cache coherency, cache 
sharing and shared data buses [7], [8]. Undermined 
determinism and performance in turn make it more difficult 
to achieve and demonstrate temporal and spatial separation 
between components in a multicore system. In other words, 
it becomes difficult to achieve and demonstrate that a higher 
criticality application is free from interference by a lower 
criticality application that resides on the same computational 
platform despite the execution of the two SW being handled 
by different cores. There could still be other shared resources 
such as memory, data buses or peripherals which would 
result in adverse interference such as the blocking of higher 
criticality task by lower criticality task that in turn could 
prevent the high criticality task from meeting its schedule 
and satisfying its performance requirements. 

Enabling technology for using multicore platforms for 
mixed-criticality applications involves partitioning 
mechanism, which generally introduces additional 
abstraction layers (e.g. separation microkernel and 



hypervisor) into the system. This tends to violate the 
simplicity in the implementation of safety functions as 
favored by the safety standard. Interactions between the 
different layers and components become more complex and 
more difficult to be visualized without proper tool support.  
Shared resource contention problems could manifest in 
different system levels and could also be solved on the 
different levels. However, these solutions could pose 
additional constraints on other design levels and must be 
taken into consideration during system design. One example 
is the stripping down of services, e.g. interrupts, provided by 
operating systems due to data consistency or scheduling 
scheme executed by the separation microkernel.  

As a result, developers of components in a multicore 
system cannot work in isolation. For instance, a common 
memory model and a standard communication protocol 
would have to be established and adopted by all the parties 
responsible in the system development. However, this could 
be difficult at times as the development timelines of the 
system components are not always aligned, particularly 
when a safety-compliant subsystem is procured. The 
subsystem might contain complex mechanisms, which might 
have impact on the functionality of the system but are for 
various reasons not documented. Such omission might be 
more detrimental in multicore systems than in single core 
ones as the information could be fundamental for properly 
handling task parallelism. Inaccessibility to such technical 
information could also hinder the design of proper 
diagnostics measures as well as test planning. 

In essence, multicore system development is not much 
different from system development using a network of 
single-core processors but issues are exacerbated due to 
shared resource problem and the complex interactions 
between elements. It becomes more difficult to demonstrate 
sufficient independence and deterministic performance in the 
design and through verification. Techniques and methods 
currently in use are geared more towards uniprocessor 
systems and might not be applicable for multicore systems. 
Current worst case execution time (WCET) analysis 
methods, for instance, are in some cases incapable in 
providing a reasonable bound on the execution time as they 
do not account for multicore specific issues such as cache 
interference and overhead induced by cache flush operations 
during context switching.  

Due to the intricate interactions between elements, it 
becomes more difficult to demonstrate freedom of 
interference in a multicore system, i.e. ensuring that low 
criticality applications do not interfere with high criticality 
applications, in terms of peripheral usage, input/output 
interfaces, communication and memory, through functional 
testing. Functional testing becomes unmanageable and at 
times insufficient. Other verification methods such as model-
based or statistical analysis, formal methods and qualified 
synthesis methods would have to be used in conjunction to 
support functional testing. 

IV. SELECTED METHODS TO REDUCE CERTIFICATION 

COSTS 

Different safety standards such as IEC61508 and 
ISO26262 regulate the design of mixed-criticality systems 
using the concept of independence.  It requires the functions 
in a system to be developed according to the highest relevant 
SIL among all these functions, unless there is sufficient 
independence of implementation between them.  

The independence between functions of different safety-
criticality levels is to be proven by either demonstrating both 
spatial and temporal independence or justifying that any 
violation of independence is controlled (IEC61508 - 7.4.2.9).  
Furthermore, safety-standards require the justification and 
documentation of independence, which implies the need for 
corresponding verification methods. 

RECOMP partners have suggested different methods and 
tools to reduce certification costs and risks in achieving 
adequate safety for mixed-criticality, multicore systems. 
These contributions have been described in more details in 
[2]. The contributions of the RECOMP project can be 
roughly split into five different categories, although the 
border between these categories is often rather thin:  

 demonstrating spatial and temporal independence 

 validation & verification methods 

 monitoring approaches 

 specification methods 

 tool chain  

The following sections briefly summarize contributions 
by RECOMP partners in each category.  

A. Demonstrating spatial and temporal independence 

1) Spatial independence 
Suggestions concerning spatial independence include 

traditional measures such as hardware memory protection or 
operating system support for virtual memory [2].   

In [15] an architecture is proposed that involves a 
centralized memory protection unit (MPU) in addition to 
CPU local protection units to guard the use of shared 
memory. This module receives all requests, compares the 
address ranges, the source of the access and the access type 
with its configuration and accepts or rejects the access.  This 
simplifies the certification of multicore systems running 
multiple safety-critical applications or even mixed-critical 
workloads. Once it has been shown that the separation of the 
applications works and fulfills all requirements, each 
application can be evaluated individually. 

2) Temporal independence 
IEC61508 recommends two main methods for achieving 

temporal independence of two software functions: 
scheduling techniques and timing analysis. 

Scheduling techniques try to solve the problem either 
statically or dynamically. The former manages resource 
access in a static way, such that temporal interference 
between functions can be excluded by design, for example 
by defining exclusive (i.e. non-overlapping) time slots for 



each function. The drawback of these approaches is that they 
may cause higher base latencies, lower processor utilization, 
as well as limited flexibility in case of unexpected events, 
such as sporadic inputs or random errors [2]. Dynamic 
scheduling, in turn, allows for calculating the priorities at 
execution time, providing lower base latencies and a greater 
flexibility in case of unexpected events. 

In this context, support for modular certification was 
provided via the AUTOFOCUS3 framework [13], which was 
used for modeling and analyzing the behaviour and structure 
of multicore systems. The framework allows for task and 
message scheduling synthesis for shared memory multicore 
architectures using satisfiability solving techniques.   

Timing analysis techniques justify the extent of temporal 
interference using formal analysis. These formal analysis 
techniques use an underlying mathematical model which can 
be used to infer and formally prove different properties of the 
system. For instance, one can determine the worst case for 
the system timing and to check if given constraints like task 
or process latencies or data path latencies are met. If all 
constraints are met in the worst case scenario, they will also 
be met in other cases. This kind of techniques imply 
additional effort in performing scheduling analysis in order 
to prove that each function satisfies its own requirements 
independently from the others. 

Several tools for formal timing analysis have been used 
(e.g., TimesTool [18], Cheddar [19])  or extended (e.g., 
SymTA/S [20]) in the context of RECOMP. Although timing 
analysis tools such as TimesTool and Cheddar target single 
core implementations, multicore implementations can be 
modeled, designed and realised by these same instruments. 
For instance, one can start the design with building over the 
conception of real-time components, then proceed to 
modeling and timing analysis, and finalize with the 
implementation. Different algorithms can be used in the 
multicore-context to provide an off-line partitioning scheme, 
after which timing analysis can be performed as in single-
core case. The SymTA/S tool has been extended to enable 
the design, optimization and verification of multicore 
scheduling, by introducing new communication overhead 
analyses and heuristics for schedule generation w.r.t safety 
and efficiency requirements. 

A crucial issue in the context of real-time performance is 
the occurrence of random hardware errors, which can cause 
time-consuming re-execution of parts of the software 
according to a non-deterministic pattern. This makes 
predicting or bounding without uncertainty the execution 
time difficult. In the context of RECOMP, new methods 
have been introduced for estimating the real-time capabilities 
of individual functions if random hardware errors occur. 

Different safety analysis techniques have been also 
employed as a means to reduce the effort of certifying 
multicore platforms.  Such techniques include analysis of 
dependent failures, safety analysis at system level via 
inductive and deductive analysis and calculation of safety 
metrics. For instance, applying some of these analysis 
techniques at system level, instead of going to subsystem 

level, reduces the effort and cost of using multicore 
platforms. 

B. Validation and Verification approaches  

Several approaches for validation and verification of 
multicore-based mixed criticality systems have been studied 
in RECOMP.  

At hardware level, techniques for verification of digital 
circuits such as simulation, verification via automated test 
generation and execution (using for instance, 
SystemVerilog), or assertion based specification (temporal 
logic statements inserted into hardware specifications) have 
been suggested [15].  

At software level, automatic white-box testing using 
concolic execution has been proposed [16]. This technique 
generates a test suite automatically and the coverage of the 
test suite itself can be verified directly without being 
dependent on the correctness of the test generation 
algorithm. Thus, any problems during test generation are 
detectable by noticing that the generated test suite does not 
fully achieve the required coverage of the source code being 
tested.  

C. Diagnostic and monitoring techniques 

Different diagnosis methods (e.g. power-on self tests, 
run-time tests, etc.) and monitoring techniques including 
traditional and more recent (model-based diagnosis) have 
been suggested in the RECOMP project, especially in the 
context of the automotive domain [2].  

In the context of multicore, monitoring and diagnostic 
techniques have been suggested both at hardware and 
software level. Among those suggested at hardware level we 
enumerate: lock step processing (2 cores run same code and 
evaluate the result), external voltage and quartz monitoring, 
monitoring system I/O or shared memory protection unit [2]. 
Other monitoring methods have been designed for the AX32 
ARM based platform using commercial-off-the-shelf 
components, in order to avoid the generation of large 
numbers of interrupt requests to critical cores from faulty 
peripherals [17]. 

At software level, the two-step degradation concept was 

introduced to allow a multicore platform to switch from a 

normal state to a safe state when non-critical errors are 

detected, or to an isolation state whenever critical errors are 

detected. Employing memory and time partitioning as well 

as the corresponding monitoring mechanisms allows one to 

present ‘non-interference’ arguments and furthermore, 

individual partitions can be modified without affecting the 

safety-critical design of other partitions. Additional useful 

techniques used were monitoring, error detection and error 

correction for bus communication, as well as control of the 

inter-core communication.  

D. Specification methods 

1) Formal specifications 
Current safety standards do not include formal methods 

such as formal specification, refinement and model checking 



as the main suggested quality assurance methods, but instead 
they heavily rely on traditional methods such as high 
coverage test suites. However, tools like NuSMV and 
Uppaal have been used successfully within RECOMP for 
performing model-checking and respectively for timing 
analysis of safety-critical systems [21].  

Additionally studied methods are Event-B [22] and the B-
method [23], two refinement-based formal methods for 
correct-by-construction development of software intensive 
systems. These methods can be used to derive provably 
correct systems from abstract specifications. The methods 
are mainly concerned with functional correctness, where 
schedulability and other timing properties need to be checked 
separately [2]. Formal modeling can be used to analyze 
models on high level of abstraction and thereby find 
problems in the design early. This is envisioned to be the 
main benefit in order to make certification easier. This will 
also bring down certification costs. Abstract formal models 
can help in re-certification when only the implementation of 
a component changes, but the specification stays the same. 
Correctness arguments for the complete system can then be 
preserved, provided that the specification captures the 
necessary information. The tools for the B-method and 
Event-B are not qualified according to any safety standard 
used in RECOMP. Nevertheless, the B-method was 
successfully used in the past in the railway industry [24].  

SIMULINK [25] is another framework which uses 
formal specifications for the development of mixed-
criticality systems. Using formal proof techniques, one can 
verify different properties of the system such as non-
occurrence of feared events, the availability of the system, 
correctness and temporal properties, robustness (i.e. safe 
state preservation), as well as verifying different pre/post-
conditions and correctness of functions.  

SIMULINK can be used in conjunction with other 
MATLAB based tools for supporting a model-based 
development process including code generation. Additions 
developed within RECOMP allow one to prove not only that 
the model is correct but also that the generated code fulfills 
certain safety requirements [2]. 

2)  Modular safety cases 
A safety case is a requirement in many safety standards. 

Since modular certification helps in reducing costs of using 
multicores, creating modular safety cases has been one of the 
topics of interests in this project. However, one of the main 
challenges that modular certification has in contrast with 
modular design is that certification must consider not only 
the regular operation but also abnormal operation and 
malfunctioning components.  To address these issues an 
approach was proposed to establish a modular and 
compositional construction for safety cases that has a 
correspondence with modular structure of the underlying 
architecture. As with system architecture, it would require to 
be possible to establish interfaces between the modular 
elements of the safety justification such that safety case 
elements may be safely composed, removed and replaced. 
Similarly as with system architecture, it will be necessary to 
establish the safety argument infrastructure required in order 

to support modular reasoning. The strategy is to define a set 
of claims related to platform level hazards. The claims are 
decomposed using sub-claims, evidence and other 
argumentation elements that are represented using the Goal 
Structuring Notation (GSN) [12][26] . 

E. Reducing Tool Qualification Costs 

The new standards for the development of safety critical 
systems such as  ISO26262, DO-178C / DO-330 [10] and  
IEC61508 require analyzing all tools that are used within the 
development process of the software. This includes also the 
integration and verification of the software. All these 
standards have a three phase approach for using tools safely:  

 Classification: the tools are classified into classes that 
describe the confidence (certification credit) they require in 
the development process of the system. The classification is 
based on the analysis of potential errors in the tool and their 
detection or prevention probability within the process. 

 Qualification: Tools that require confidence in the 
analyzed processes have to be qualified. Qualification might 
be restricted to the identified use cases and to show the 
absence of critical errors. In the ISO26262 there are many 
qualification methods suggested (proven in use, process 
assessment, validation and development according to a 
safety standard).  

 Usage: The tools can be used according to the known or 
found restrictions in the development process. There should 
be a documentation that contains the constraints from the 
process that have been considered in the analysis phase and 
workarounds for all restrictions found during tool 
qualification.  

Obviously all three steps (classification, qualification, 
usage) cause costs. While classification of a tool (within a 
given tool chain) is not so expensive (experience is that this 
can be done with two to five days using Tool Chain Analysis 
(TCA) tool which is developed within the research project 
RECOMP), the qualification of tools can be very much 
effort, especially if there are no adequate qualification kits 
available that cover the relevant use cases. Furthermore also 
the process costs, for detecting or avoiding errors in 
unqualified tools or unqualified functions of tools can be 
costly (for example using a tool redundancy strategy). 

The TCA (see Fig. 2 and [11]) allows one to model a tool 
chain structure in terms of tools having use cases which are 
reading or writing artifacts. The TCA also allows to compute 
the confidence level for every tool and use-case from the 
model that consists of tools, artifacts, use cases, features, 
potential errors, checks and restrictions as shown above 
together with their error detection probability which is the 
basis for computing the confidence needs.  

The TCA also offers lots of plausibility checks for the 
tool chain and confidence model. For example if an detection 
measure from Tool B is assigned to a potential failure of tool 
A then there must be a data flow in terms of input/output 
artifacts from tool A to tool B, otherwise the assignment of 
this detection measure is invalid. 



 

 

Fig. 2. Tool Chain Analyzer with generated figures and tables (MS Word) 

The TCA can also generate a MS Word report, which 
contains detailed tables and figures for each identified 
potential tool failure, such that the computed TCL becomes 
plausible, comprehensible and checkable by review. The 
structure of this word report is designed such that it can be 
directly used as a part for the tool criteria evaluation report 
required by ISO26262.  

As an example, the tool chain analysis method has 
proven to reduce the tool qualification needs, in one example 
by over 90% [9], so it has a big part in the success that the 
certification costs could be reduced using the methods 
developed in the RECOMP project. 

V. CONCLUSIONS 

Development of the next generation of main safety 
standards (IEC61508, ISO26262) starts in the coming years, 
and the publication phase is approximately in 2020. 
RECOMP results can be significant contribution especially 
for IEC61508, because they are current State-of-the-Art. 
Multicore platforms and their methods and tools provide a 
consistent additional set in current methods and tools. Also 
many current methods become obsolete during this decade 
and can be replaced with more effective, modern methods. 
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