
Impact of multicore platforms in hardware and

software certification
Summary results of RECOMP WP4

Risto Nevalainen

Spinet Oy

Espoo, Finland

risto.nevalainen@spinet.fi

Uwe Kremer

TÜV SÜD Rail GmbH

Munich, Germany

uwe.kremer@tuev-sued.de

Oscar Slotosch

Validas AG

Munich, Germany

slotosch@validas.de

Dragos Truscan

Åbo Akademi University

Turku, Finland

dragos.truscan@abo.fi

Vicky Wong

Space Systems Finland Oy

Espoo, Finland

vicky.wong@ssf.fi

Abstract— This article is a summary of the main results1 of the

RECOMP project in certification and qualification topics.

Work package 4 in RECOMP has made contributions in

amendments in safety standards, including multicore specific

hardware and software requirements and addressed the need

for additional methods and techniques. Cost-effective

certification has also been a main topic in WP4 work.

Current safety standards provide a well defined reference

in most generic and domain-specific safety issues. However,

they are not complete and accurate enough in certifying

multicore platforms and applications. By definition, standards

are somewhat behind of leading edge already at the moment

when they are published. Multicore specific methods,

techniques and tools are mainly additional details as

certification criteria, missing in current safety standards.

Keywords—multicore, certification, safety standards

I. INTRODUCTION

Certification and qualification of safety-critical systems
ensure that the systems are suitable for their intended use.
These activities involve the provision of objective evidences
to demonstrate with the level of confidence required by an
applicable standard that the systems will behave as intended.
The greater the potential consequences in the event of failure
of the systems, the higher the required level of confidence
becomes, which generally result in higher costs. Work
Package 4 of the project RECOMP (Reduced Certification
Costs Using Multicore Platforms) addresses certification and
qualification aspects of safety-critical systems and software.
Based on a subset of safety requirements from RECOMP
WP1, WP4 has defined different approaches with the goal of
reducing certification and re-certification costs of safety-

1
 The methods and tools discussed in this article have been evaluated,

improved, or developed by different RECOMP partners for addressing

multicore issues, and not by the authors of this article, whose mere
contribution was to briefly enumerate them.

critical systems, as well as enabling the qualification and
certification of multicore systems. This paper enumerates the
WP4 findings that target the automotive and industrial
automation domain, which are described in more details in
the two project deliverables: Standards Amendment targeting
multiple processor safety systems (SMP, AMP) [1] and
Development process amendments to achieve a robust and
safe development [2]. The former is a set of results and
findings about the need to include multicore specific
requirements in IEC61508 and other safety standards, while
the latter describes needs in development process itself and
how methods and tools can support robust and cost-effective
system development and certification.

II. TOWARDS NEW CERTIFICATION APPROACHES

A. Integrated use of safety standards in qualification and

certification

Safety is presented in many ways in current standards. In
some standards safety is only implicit, without being
mentioned. It can be even avoided, so that the standard does
not get any flavor from the safety domain. A good example
is assurance case standard ISO/IEC15026, which can be
directly applied for safety case. The safety community has
much to learn from a large set of “non-safety” standards;
how to use them and how to write reusable standards.

In some other standards, safety is the main focus area,
and any other topic may be avoided (e.g. security). Good
example is ISO26262 [5]. It is quite directly derived from the
main functional safety standard IEC61508 [3], adding a lot
of automotive specific details and requirements. Similar
standards are developed for avionics, nuclear power, medical
electronics and various other domains.

Safety can be evaluated using several basic approaches.
The key output, the system and/or software product, can be
assessed against a predefined set of safety requirements.
Safety assessment approach covers both the product and the

mailto:uwe.kremer@tuev-sued.de
mailto:slotosch@validas.de
mailto:dragos.truscan@abo.fi
mailto:vicky.wong@ssf.fi

process characteristics and properties. Process assessment
focuses typically on the product development phase. All
these approaches produce valuable information in building
trust on the safety of the product. So far, harmonization of
different approaches is missing in certification and
qualification of safety-critical hardware and software.

RECOMP project has developed an integrated method, in
which product evaluation, safety assessment and process
assessment can be combined. This method is based on
systematic collection and classification of evidences, so that
they are collected only once but can be reused for different
qualification and certification approaches. It saves costs in
the typically laborious data collection phase. The main
skeleton for integrated method is ISO/IEC15504 standard for
process assessment [4]. It has also extension for safety
management, safety engineering and tool qualification
processes. Methods are an essential part of evidences in a
typical certification case.

B. Pre-certified and reusable elements in systems

Safety functions are normally realised by subsystems.
Typical safety function consists of the three subsystems
sensor, logic unit and actor (see Fig. 1).

Figure 1. Fig. 1 Parts of a typical safety function

These subsystems consist of elements. An element is
defined according to ISO26262-1:2011 as a system or part of
a system including components, hardware, software,
hardware parts and software units. The IEC61508-4:2010
defines an element as part of a subsystem comprising a
single component or any group of components that performs
one or more element safety function. The definitions are
oriented on the behaviour of a functional unit without the
definition of physical limitations. Therefore it is possible to
define generic elements with generic safety functions
participating on an overall application specific safety
function.

Typical generic elements with a generic safety function
are for example a microcontroller, an operating system,
software libraries or power supply units. Generic elements
should be qualified and certified for the use in safety relevant
applications without knowledge of the final safety function.
The terms compliant item according to IEC61508-4:2010 or
safety element out of context according to ISO26262:2011
can and should be used.

 In general, the development and design of generic safety
elements has to follow the requirements of safety standards
for avoidance and control of systematic faults as well as the
robustness for random faults. There are some effects to be
considered when safety elements are combined. In principal

it is possible to reach a higher risk reduction by combining
already pre-certified elements in parallel for a redundant
operation. But this is only valid for the influence of random
faults. For instance, if two homogenous elements are used in
parallel a systematic fault will affect both elements at the
same time. Therefore it is necessary to combine elements
with a sufficient independence to be also robust against
systematic faults.

The main benefit of using pre-certified safety elements is
the simple reuse of these elements in different safety
applications without a re-assessment of the basic element
functionality. Furthermore, higher risk reduction levels could
be reached by combining these elements. The main
requirements for a pre-certification are to tailor the
development process depending on the safety element and to
provide the necessary information for the system integrator
in the safety manual.

III. MULTICORE IN EMERGING SAFETY STANDARDS

The IEC61508 standard describes various safety
requirements as well as fault avoidance and fault control
measures that could be used during a safety-related system
development process and in the system design to reduce the
possibilities of random hardware failures and systematic
failures that would compromise the functional safety of the
system. However, the IEC61508 requirements are stated in a
rather generic manner and do not sufficiently address
multicore system development.

Isolation, separation and independence of safety and non-
safety-related functions as promoted by the IEC61508
standard are areas in which the use of multicore technology
in safety-related applications is experiencing the most
difficulties. Multicore platforms provide the possibility to
realise mixed-criticality applications on multicore platforms.
However, the contention of shared resources inherent to
multicore system may lead to concurrency and
synchronization issues such as latency, jitter, throughput,
lockout and deadlock [6], which could significantly
undermine the determinism or integrity of the system design.
Performance and control stability may also be compromised
due to problems associated with cache coherency, cache
sharing and shared data buses [7], [8]. Undermined
determinism and performance in turn make it more difficult
to achieve and demonstrate temporal and spatial separation
between components in a multicore system. In other words,
it becomes difficult to achieve and demonstrate that a higher
criticality application is free from interference by a lower
criticality application that resides on the same computational
platform despite the execution of the two SW being handled
by different cores. There could still be other shared resources
such as memory, data buses or peripherals which would
result in adverse interference such as the blocking of higher
criticality task by lower criticality task that in turn could
prevent the high criticality task from meeting its schedule
and satisfying its performance requirements.

Enabling technology for using multicore platforms for
mixed-criticality applications involves partitioning
mechanism, which generally introduces additional
abstraction layers (e.g. separation microkernel and

hypervisor) into the system. This tends to violate the
simplicity in the implementation of safety functions as
favored by the safety standard. Interactions between the
different layers and components become more complex and
more difficult to be visualized without proper tool support.
Shared resource contention problems could manifest in
different system levels and could also be solved on the
different levels. However, these solutions could pose
additional constraints on other design levels and must be
taken into consideration during system design. One example
is the stripping down of services, e.g. interrupts, provided by
operating systems due to data consistency or scheduling
scheme executed by the separation microkernel.

As a result, developers of components in a multicore
system cannot work in isolation. For instance, a common
memory model and a standard communication protocol
would have to be established and adopted by all the parties
responsible in the system development. However, this could
be difficult at times as the development timelines of the
system components are not always aligned, particularly
when a safety-compliant subsystem is procured. The
subsystem might contain complex mechanisms, which might
have impact on the functionality of the system but are for
various reasons not documented. Such omission might be
more detrimental in multicore systems than in single core
ones as the information could be fundamental for properly
handling task parallelism. Inaccessibility to such technical
information could also hinder the design of proper
diagnostics measures as well as test planning.

In essence, multicore system development is not much
different from system development using a network of
single-core processors but issues are exacerbated due to
shared resource problem and the complex interactions
between elements. It becomes more difficult to demonstrate
sufficient independence and deterministic performance in the
design and through verification. Techniques and methods
currently in use are geared more towards uniprocessor
systems and might not be applicable for multicore systems.
Current worst case execution time (WCET) analysis
methods, for instance, are in some cases incapable in
providing a reasonable bound on the execution time as they
do not account for multicore specific issues such as cache
interference and overhead induced by cache flush operations
during context switching.

Due to the intricate interactions between elements, it
becomes more difficult to demonstrate freedom of
interference in a multicore system, i.e. ensuring that low
criticality applications do not interfere with high criticality
applications, in terms of peripheral usage, input/output
interfaces, communication and memory, through functional
testing. Functional testing becomes unmanageable and at
times insufficient. Other verification methods such as model-
based or statistical analysis, formal methods and qualified
synthesis methods would have to be used in conjunction to
support functional testing.

IV. SELECTED METHODS TO REDUCE CERTIFICATION

COSTS

Different safety standards such as IEC61508 and
ISO26262 regulate the design of mixed-criticality systems
using the concept of independence. It requires the functions
in a system to be developed according to the highest relevant
SIL among all these functions, unless there is sufficient
independence of implementation between them.

The independence between functions of different safety-
criticality levels is to be proven by either demonstrating both
spatial and temporal independence or justifying that any
violation of independence is controlled (IEC61508 - 7.4.2.9).
Furthermore, safety-standards require the justification and
documentation of independence, which implies the need for
corresponding verification methods.

RECOMP partners have suggested different methods and
tools to reduce certification costs and risks in achieving
adequate safety for mixed-criticality, multicore systems.
These contributions have been described in more details in
[2]. The contributions of the RECOMP project can be
roughly split into five different categories, although the
border between these categories is often rather thin:

 demonstrating spatial and temporal independence

 validation & verification methods

 monitoring approaches

 specification methods

 tool chain

The following sections briefly summarize contributions
by RECOMP partners in each category.

A. Demonstrating spatial and temporal independence

1) Spatial independence
Suggestions concerning spatial independence include

traditional measures such as hardware memory protection or
operating system support for virtual memory [2].

In [15] an architecture is proposed that involves a
centralized memory protection unit (MPU) in addition to
CPU local protection units to guard the use of shared
memory. This module receives all requests, compares the
address ranges, the source of the access and the access type
with its configuration and accepts or rejects the access. This
simplifies the certification of multicore systems running
multiple safety-critical applications or even mixed-critical
workloads. Once it has been shown that the separation of the
applications works and fulfills all requirements, each
application can be evaluated individually.

2) Temporal independence
IEC61508 recommends two main methods for achieving

temporal independence of two software functions:
scheduling techniques and timing analysis.

Scheduling techniques try to solve the problem either
statically or dynamically. The former manages resource
access in a static way, such that temporal interference
between functions can be excluded by design, for example
by defining exclusive (i.e. non-overlapping) time slots for

each function. The drawback of these approaches is that they
may cause higher base latencies, lower processor utilization,
as well as limited flexibility in case of unexpected events,
such as sporadic inputs or random errors [2]. Dynamic
scheduling, in turn, allows for calculating the priorities at
execution time, providing lower base latencies and a greater
flexibility in case of unexpected events.

In this context, support for modular certification was
provided via the AUTOFOCUS3 framework [13], which was
used for modeling and analyzing the behaviour and structure
of multicore systems. The framework allows for task and
message scheduling synthesis for shared memory multicore
architectures using satisfiability solving techniques.

Timing analysis techniques justify the extent of temporal
interference using formal analysis. These formal analysis
techniques use an underlying mathematical model which can
be used to infer and formally prove different properties of the
system. For instance, one can determine the worst case for
the system timing and to check if given constraints like task
or process latencies or data path latencies are met. If all
constraints are met in the worst case scenario, they will also
be met in other cases. This kind of techniques imply
additional effort in performing scheduling analysis in order
to prove that each function satisfies its own requirements
independently from the others.

Several tools for formal timing analysis have been used
(e.g., TimesTool [18], Cheddar [19]) or extended (e.g.,
SymTA/S [20]) in the context of RECOMP. Although timing
analysis tools such as TimesTool and Cheddar target single
core implementations, multicore implementations can be
modeled, designed and realised by these same instruments.
For instance, one can start the design with building over the
conception of real-time components, then proceed to
modeling and timing analysis, and finalize with the
implementation. Different algorithms can be used in the
multicore-context to provide an off-line partitioning scheme,
after which timing analysis can be performed as in single-
core case. The SymTA/S tool has been extended to enable
the design, optimization and verification of multicore
scheduling, by introducing new communication overhead
analyses and heuristics for schedule generation w.r.t safety
and efficiency requirements.

A crucial issue in the context of real-time performance is
the occurrence of random hardware errors, which can cause
time-consuming re-execution of parts of the software
according to a non-deterministic pattern. This makes
predicting or bounding without uncertainty the execution
time difficult. In the context of RECOMP, new methods
have been introduced for estimating the real-time capabilities
of individual functions if random hardware errors occur.

Different safety analysis techniques have been also
employed as a means to reduce the effort of certifying
multicore platforms. Such techniques include analysis of
dependent failures, safety analysis at system level via
inductive and deductive analysis and calculation of safety
metrics. For instance, applying some of these analysis
techniques at system level, instead of going to subsystem

level, reduces the effort and cost of using multicore
platforms.

B. Validation and Verification approaches

Several approaches for validation and verification of
multicore-based mixed criticality systems have been studied
in RECOMP.

At hardware level, techniques for verification of digital
circuits such as simulation, verification via automated test
generation and execution (using for instance,
SystemVerilog), or assertion based specification (temporal
logic statements inserted into hardware specifications) have
been suggested [15].

At software level, automatic white-box testing using
concolic execution has been proposed [16]. This technique
generates a test suite automatically and the coverage of the
test suite itself can be verified directly without being
dependent on the correctness of the test generation
algorithm. Thus, any problems during test generation are
detectable by noticing that the generated test suite does not
fully achieve the required coverage of the source code being
tested.

C. Diagnostic and monitoring techniques

Different diagnosis methods (e.g. power-on self tests,
run-time tests, etc.) and monitoring techniques including
traditional and more recent (model-based diagnosis) have
been suggested in the RECOMP project, especially in the
context of the automotive domain [2].

In the context of multicore, monitoring and diagnostic
techniques have been suggested both at hardware and
software level. Among those suggested at hardware level we
enumerate: lock step processing (2 cores run same code and
evaluate the result), external voltage and quartz monitoring,
monitoring system I/O or shared memory protection unit [2].
Other monitoring methods have been designed for the AX32
ARM based platform using commercial-off-the-shelf
components, in order to avoid the generation of large
numbers of interrupt requests to critical cores from faulty
peripherals [17].

At software level, the two-step degradation concept was

introduced to allow a multicore platform to switch from a

normal state to a safe state when non-critical errors are

detected, or to an isolation state whenever critical errors are

detected. Employing memory and time partitioning as well

as the corresponding monitoring mechanisms allows one to

present ‘non-interference’ arguments and furthermore,

individual partitions can be modified without affecting the

safety-critical design of other partitions. Additional useful

techniques used were monitoring, error detection and error

correction for bus communication, as well as control of the

inter-core communication.

D. Specification methods

1) Formal specifications
Current safety standards do not include formal methods

such as formal specification, refinement and model checking

as the main suggested quality assurance methods, but instead
they heavily rely on traditional methods such as high
coverage test suites. However, tools like NuSMV and
Uppaal have been used successfully within RECOMP for
performing model-checking and respectively for timing
analysis of safety-critical systems [21].

Additionally studied methods are Event-B [22] and the B-
method [23], two refinement-based formal methods for
correct-by-construction development of software intensive
systems. These methods can be used to derive provably
correct systems from abstract specifications. The methods
are mainly concerned with functional correctness, where
schedulability and other timing properties need to be checked
separately [2]. Formal modeling can be used to analyze
models on high level of abstraction and thereby find
problems in the design early. This is envisioned to be the
main benefit in order to make certification easier. This will
also bring down certification costs. Abstract formal models
can help in re-certification when only the implementation of
a component changes, but the specification stays the same.
Correctness arguments for the complete system can then be
preserved, provided that the specification captures the
necessary information. The tools for the B-method and
Event-B are not qualified according to any safety standard
used in RECOMP. Nevertheless, the B-method was
successfully used in the past in the railway industry [24].

SIMULINK [25] is another framework which uses
formal specifications for the development of mixed-
criticality systems. Using formal proof techniques, one can
verify different properties of the system such as non-
occurrence of feared events, the availability of the system,
correctness and temporal properties, robustness (i.e. safe
state preservation), as well as verifying different pre/post-
conditions and correctness of functions.

SIMULINK can be used in conjunction with other
MATLAB based tools for supporting a model-based
development process including code generation. Additions
developed within RECOMP allow one to prove not only that
the model is correct but also that the generated code fulfills
certain safety requirements [2].

2) Modular safety cases
A safety case is a requirement in many safety standards.

Since modular certification helps in reducing costs of using
multicores, creating modular safety cases has been one of the
topics of interests in this project. However, one of the main
challenges that modular certification has in contrast with
modular design is that certification must consider not only
the regular operation but also abnormal operation and
malfunctioning components. To address these issues an
approach was proposed to establish a modular and
compositional construction for safety cases that has a
correspondence with modular structure of the underlying
architecture. As with system architecture, it would require to
be possible to establish interfaces between the modular
elements of the safety justification such that safety case
elements may be safely composed, removed and replaced.
Similarly as with system architecture, it will be necessary to
establish the safety argument infrastructure required in order

to support modular reasoning. The strategy is to define a set
of claims related to platform level hazards. The claims are
decomposed using sub-claims, evidence and other
argumentation elements that are represented using the Goal
Structuring Notation (GSN) [12][26] .

E. Reducing Tool Qualification Costs

The new standards for the development of safety critical
systems such as ISO26262, DO-178C / DO-330 [10] and
IEC61508 require analyzing all tools that are used within the
development process of the software. This includes also the
integration and verification of the software. All these
standards have a three phase approach for using tools safely:

 Classification: the tools are classified into classes that
describe the confidence (certification credit) they require in
the development process of the system. The classification is
based on the analysis of potential errors in the tool and their
detection or prevention probability within the process.

 Qualification: Tools that require confidence in the
analyzed processes have to be qualified. Qualification might
be restricted to the identified use cases and to show the
absence of critical errors. In the ISO26262 there are many
qualification methods suggested (proven in use, process
assessment, validation and development according to a
safety standard).

 Usage: The tools can be used according to the known or
found restrictions in the development process. There should
be a documentation that contains the constraints from the
process that have been considered in the analysis phase and
workarounds for all restrictions found during tool
qualification.

Obviously all three steps (classification, qualification,
usage) cause costs. While classification of a tool (within a
given tool chain) is not so expensive (experience is that this
can be done with two to five days using Tool Chain Analysis
(TCA) tool which is developed within the research project
RECOMP), the qualification of tools can be very much
effort, especially if there are no adequate qualification kits
available that cover the relevant use cases. Furthermore also
the process costs, for detecting or avoiding errors in
unqualified tools or unqualified functions of tools can be
costly (for example using a tool redundancy strategy).

The TCA (see Fig. 2 and [11]) allows one to model a tool
chain structure in terms of tools having use cases which are
reading or writing artifacts. The TCA also allows to compute
the confidence level for every tool and use-case from the
model that consists of tools, artifacts, use cases, features,
potential errors, checks and restrictions as shown above
together with their error detection probability which is the
basis for computing the confidence needs.

The TCA also offers lots of plausibility checks for the
tool chain and confidence model. For example if an detection
measure from Tool B is assigned to a potential failure of tool
A then there must be a data flow in terms of input/output
artifacts from tool A to tool B, otherwise the assignment of
this detection measure is invalid.

Fig. 2. Tool Chain Analyzer with generated figures and tables (MS Word)

The TCA can also generate a MS Word report, which
contains detailed tables and figures for each identified
potential tool failure, such that the computed TCL becomes
plausible, comprehensible and checkable by review. The
structure of this word report is designed such that it can be
directly used as a part for the tool criteria evaluation report
required by ISO26262.

As an example, the tool chain analysis method has
proven to reduce the tool qualification needs, in one example
by over 90% [9], so it has a big part in the success that the
certification costs could be reduced using the methods
developed in the RECOMP project.

V. CONCLUSIONS

Development of the next generation of main safety
standards (IEC61508, ISO26262) starts in the coming years,
and the publication phase is approximately in 2020.
RECOMP results can be significant contribution especially
for IEC61508, because they are current State-of-the-Art.
Multicore platforms and their methods and tools provide a
consistent additional set in current methods and tools. Also
many current methods become obsolete during this decade
and can be replaced with more effective, modern methods.

ACKNOWLEDGMENT

This work has been partially funded by the National
Authorities involved in RECOMP and the Advanced
Research & Technology for Embedded Intelligence and
Systems (ARTEMIS) within the project RECOMP under
Grant agreement no. 100202. Any opinions, findings and
conclusions or recommendations expressed in this article are
those of the authors and do not necessarily reflect the views
of funding agencies. The authors would like to thank all
partners and WP leaders for constructive collaboration in
creating project results.

REFERENCES

[1] Standards Amendment targeting multiple processor safety systems
(SMP, AMP). Deliverable D4.2a.1 in RECOMP.

[2] Development process amendments to achieve a robust and safe
development. Deliverable D4.2a.2 in RECOMP.

[3] International Electrotechnical Commission, IEC61508, Functional
safety of electrical/electronic/programmable electronic safety-related
systmes, Edition 2.0, Apr 2010 (7 parts).

[4] ISO/IEC15504-5, Information technology – Process assessment - Part
5: An Exemplar Process Assessment Model. 2012.

[5] International Organization for Standardization. ISO26262 Road
Vehicles –Functional safety–. 1st Edition, 2011-11-15 (10 parts).

[6] B. Baert and S. Luys. Application of multicore CPUs in a safety-
critical context. Internet:
http://www.barco.com/barcoview/downloads/
multicore_CPUs_in_safety-critical_applications.pdf, 21 March 2011.
[Accessed: 6 December 2012].

[7] L.M. Kinnan. Use of multicore processors in avionics systems and its
potential impact on implementation and certification, Digital
Avionics Systems conference (DASC ‘09), Orlando, USA, 2009.

[8] R. Fuchesen. How to address certification for multicore based IMA
platforms: Current status and potential solutions, Digital Avionics
Systems Conference (DASC ’10), Salt Lake City, USA, 2010.

[9] M. Wildmoser et al. ISO26262 - Tool Chain Analysis Reduces Tool
Qualification Costs. In SAFECOMP 2012.

[10] RTCA. DO-330: Software Tool Qualification Considerations 1st
Edition 2011-12-13.

[11] Tool Chain Analyzer Tool, can be downloaded from
www.validas.de/TCA.html [Accessed: 6 December 2012].

[12] Origin Consulting GSN Community Standard Version 1 (2011)

[13] S. Voss and B. Schätz, Scheduling shared memory multicore
architectures in AUTOFOCUS 3 using Satisfiability Modulo
Theories, MBEES 2012 Daghstuhl Workshop, 2012.

[14] A. Hattendorf, A. Raabe, and A. Knoll: Shared memory protection for
spatial separation in multicore architectures. SIES 2012: 299-302.

[15] M. Šimková, O. Lengál, M. Kajan: HAVEN: An Open Framework
for FPGA-Accelerated Functional Verification of Hardware, FIT-TR-
2011-05, Brno, CZ, FIT BUT, p. 16, 2011.

[16] K. Kähkönen et al. LCT: An Open Source Concolic Testing Tool for
Java Programs. In Proceedings of the 6th Workshop on Bytecode
Semantics, Verification, Analysis and Transformation
(BYTECODE'2011), pages 75-80, Saarbrucken, Germany, Mar 2011.

[17] J. Strnadel.: Proposal of Flexible Monitoring-Driven HW/SW
Interrupt Management for Embedded COTS-Based Event-Triggered
Real-Time Systems, In: Proceedings of the Work-in-Progress Session
of the 32nd IEEE Real-Time Systems Symposium, Vienna, AT,
TUV, 2011, s. 29-32

[18] Uppsala University. “Times Tool”, Internet:
http://www.timestool.com/, [Accessed: 6 December 2012].

[19] F. Singhoff. “The Cheddar project: a free real time scheduling
analyzer”, Internet: http://beru.univ-brest.fr/~singhoff/cheddar/, Sep.
2011. [Accessed: 6 December 2012].

[20] Symtavision, “SymTA/S”, Internet: www.symtavision.com.
[Accessed: 6 December 2012].

[21] X. Gan, J. Dubrovin and K. Heljanko: A Symbolic Model Checking
Approach to Verifying Satellite Onboard Software. In Proceedings of
the 11th International Workshop on Automated Verification of
Critical Systems (AVoCS 2011), Newcastle, UK, September 2011.

[22] J.-R. Abrial. Modeling in Event-B: System and Software Engineering,
Cambridge University Press, 2010

[23] J.-R. Abrial. The B-Book: Assigning Programs to Meanings,
Cambridge University Press, 1996.

[24] P. Behm, P. Desforges and J. M. Meynadier. Météor: An Industrial
Success in Formal Development. In B'98: Recent Advances in the
Development and Use of the B Method, LNCS 1393, Springer, 1998.

[25] MathWorks. “SIMULINK”. Internet:
http://www.mathworks.com/products/simulink/. [Accessed: 6
December 2012].

[26] A. Ruiz, I. Habli, and H. Espinoza: Towards a Case-Based Reasoning
Approach for Safety Assurance Reuse. In Proceedings of the 2012
International Conference on Computer Safety, Reliability and
Security, SAFECOMP’12, p.22-35, Magdeburg, Germany, 2012.

http://www.barco.com/barcoview/downloads/%20multicore_CPUs_in_safety-critical_applications.pdf
http://www.barco.com/barcoview/downloads/%20multicore_CPUs_in_safety-critical_applications.pdf
http://www.validas.de/TCA.html
http://www.timestool.com/
http://beru.univ-brest.fr/~singhoff/cheddar/
http://www.symtavision.com/
http://www.mathworks.com/products/simulink/

